Laboratory Safety Guide
EMERGENCY TELEPHONE NUMBER

UMCP Emergency (Fire, Police, Rescue, Emergency Medical Service) 9-1-1

ASSISTANCE TELEPHONE NUMBERS

- Environmental Safety Office (Fire Protection, Environmental Hygiene, Biosafety, Hazardous Waste Information, Accident/Hazard Investigation) (40)5-3960
- Hazardous Waste Pick-up (40)5-3960
- Maryland Poison Center 1-800-492-2414 (for information after 9-1-1 call)
- Physical Plant Work Control (40)5-2222
- Radiation Safety (40)5-3985
- University Health Center (31)4-8172
Review and Approval Authority

Prepared and Edited by:

[Signature]
Environmental Hygienist

Date

Reviewed and Approved by:

[Signature]
Director - Department of Environmental Safety

Date

Reviewed and Approved by:

[Signature]
Chair - Biological and Chemical Hygiene Committee

Date
Overall safety in the lab is EVERY LAB USER’S responsibility. Each individual has an obligation to maintain, to the best of their ability, a safe work environment. It is suggested that one method of maintaining a safe work place is to actively incorporate these safety practices into your laboratory activities. As a guide, these practices will help identify potential hazards in the lab, and will provide a reminder of routine safety requirements.

The Laboratory Safety Guide incorporates both general guidelines as well as more in-depth information about specific laboratory safety practices. Please refer to the Table of Contents for topics of interest to you or which pertain to your laboratory. Remember, if you can't find an answer, the staff at the Department of Environmental Safety (DES) will try to help you. Please call us at (40)5-3960, E-MAIL at SAFETY@UMDACC.UMD.EDU, or stop by our office at 7505 Yale Ave.
ACKNOWLEDGEMENTS

This guide represents a true group effort. It is the combined effort of the University faculty, staff members of DES and the wealth of safety information available from our peers in the field.

We would especially like to acknowledge the University of Virginia Office of Environmental Health and Safety for generously providing the framework for this document.
SAFETY CHECKLIST FOR LABORATORY USERS

Please read the following questions and think carefully about your answers.

YES NO

1. Do you wash your hands before leaving the laboratory?

2. Do you wear appropriate attire in the laboratory (lab coat, safety goggles, gloves, shoes)?

3. Are the appropriate hazard signs and emergency numbers posted on the outside of the laboratory door?

4. Are all containers in your lab properly labeled? Do you know how to interpret these labels?

5. Do you know where to find Material Safety Data Sheets (MSDSs) for all chemicals used in your laboratory?

6. Are the chemicals in your lab properly stored?

7. Have you been instructed in the proper use and handling of the chemicals in your laboratory?

8. Have you been instructed in the location and use of safety devices (safety showers, eye washes, laboratory hoods, etc.) in your laboratory?

9. Are you aware of emergency procedures in the event of a chemical exposure, spill, fire or explosion?

10. Do you know how to properly segregate and dispose of chemicals you will use?

11. Are all mechanical engineering controls (e.g., fume hoods) operating properly?

12. Do you know who to notify if working in a laboratory alone after normal hours?

13. Have you attended Chemical Hygiene Plan training provided by DES?

14. Have you attended laboratory specific training provided by your Laboratory Supervisor?

15. Do you know where your laboratory Standard Operating Procedures (SOP) are stored and how to use them?

16. Are you familiar with the protocol you are following? Do you feel comfortable performing the procedure without additional information or demonstration?

If you answered NO to any of these questions, read this laboratory safety guide and if you still have questions, see your laboratory supervisor or contact DES at (40)5-3960 for assistance.
this page intentionally blank
TABLE OF CONTENTS

GENERAL LABORATORY SAFETY PRACTICES
- Awareness .. 1
- Personal Safety .. 2
- Fire Prevention .. 2
- Housekeeping ... 3
- Emergency Procedures .. 4
- Waste Disposal ... 4
- Miscellaneous .. 5

SAFETY EQUIPMENT
- Personal Protective Equipment .. 7
 - Eye Protection .. 7
 - Protective Clothing .. 8
 - Hand Protection ... 9
 - Foot Protection ... 10
 - Hearing Protection .. 11
 - Head Protection ... 11
 - Respiratory Protection ... 11
- Laboratory Safety Equipment .. 13
 - Fume Hoods ... 13
 - Storage Cabinets ... 14
 - Storage Containers ... 14
 - Refrigerators ... 15
 - Eyewash Stations ... 15
 - Safety Showers ... 16
 - Fire Safety Equipment ... 17
- Laboratory Equipment Safety .. 19
 - Glassware .. 19
 - Heating Devices .. 19
 - Vacuum Systems ... 20
 - Centrifuges .. 21

FIRST AID AND EMERGENCY PROCEDURES
- First Aid .. 23
 - Wounds .. 23
 - Thermal Burns ... 23
 - Chemical Burns ... 24
 - Ingestion of Chemicals .. 24
 - Inhalation of Chemicals .. 24
- First Aid Kits .. 24
- CPR Training .. 25
- Emergency Procedures .. 25
 - Chemical Spills .. 25
 - Radioactive Material Spills ... 26
 - Biohazard Spills ... 27
 - Fire Safety ... 27
GENERAL LABORATORY SAFETY PRACTICES

The purpose of this guide is to promote safety awareness and encourage safe work practices in the laboratory. These are guidelines; they should serve as a reminder of things you can do to work more safely. Although these guidelines are applicable to all research, teaching and academic laboratories, your lab may require more specialized rules that apply to specific materials and equipment. Please see your Laboratory Supervisor (LS) or Principal Investigator (PI) for more information before beginning work in the lab.

AWARENESS

/ Be alert to unsafe conditions and actions, and call attention to them so that corrections can be made as soon as possible.

/ Label all storage areas, refrigerators, etc., appropriately, and keep all chemicals in properly labeled containers.
 - Date all bottles when received and when opened.
 - Note expiration dates on chemicals.
 - Note special storage conditions.

/ Be familiar with the appropriate protective measures to take when exposed to the following classes of hazardous materials. Information is available from your lab supervisor, DES and the chemistry library:
 - Flammables
 - Radioactive Compounds
 - Corrosives
 - Biohazards
 - Toxics
 - Carcinogens
 - Reactives
 - Compressed Gases

/ Segregate chemicals by compatibility groups for storage.

/ Be aware of the potential interactions of lab furniture and equipment with chemicals used or stored in the lab. (e.g., are oxidizers stored directly on wooden shelving?)

/ Post warning signs for unusual hazards such as flammable materials, biohazards or other special problems.

/ Pour more concentrated solutions into less concentrated solutions to avoid violent reactions (i.e., Always add acid to water; not water to acid).

/ Avoid distracting any other worker. Practical jokes or horseplay have no place in the laboratory.

/ Use equipment only for its designated purpose.

/ Position and secure apparatus used for hazardous reactions in order to permit manipulation without moving the apparatus until the entire reaction is complete.
PERSONAL SAFETY

Respiratory and Body Protection

- Use fume hoods whenever possible.
- Splash proof safety goggles should be worn at all times in the laboratory.
- Laboratory coat/apron should be worn in the laboratory.
- Appropriate gloves should be worn as needed.
- Appropriate closed-toed shoes should be worn in the laboratory.
- Respirators may only be worn by individuals that have completed respirator training and fit testing through DES and obtained a respirator medical clearance form the University Health Center.

Personal Hygiene

- Wash hands before leaving laboratory.
- Launder clothing worn in laboratory separately from other clothing.
- Never mouth pipette anything in the lab.
- Never eat, drink or apply cosmetics in a laboratory or areas where chemicals/hazardous agents are stored. (Smoking is prohibited in all areas of University buildings, including laboratories.)
- Never store food in a refrigerator where hazardous materials are stored.
- Never eat or drink from laboratory glassware.
- Avoid wearing contact lenses in the laboratory.
- Avoid situating long hair, loose sleeves/cuffs, rings, bracelets, etc. in close proximity to open flames or operating machinery.
- Keep exposed skin covered. Shorts, sleeveless or short sleeve shirts, skirts or open-toed shoes should not be worn in the laboratory.

FIRE PREVENTION

- Be aware of ignition sources in lab area (open flames, heat, electrical equipment).
- Purchase and store flammable reagents in the smallest quantities available.
- Store flammable liquids that require refrigeration in explosion-proof refrigerators.
- Store flammable liquids in appropriate safety cabinets and/or safety cans.
- Do not store incompatible reagents together (e.g., acids with flammables). Lists of incompatible reagents can be found in several source books (for example, Handbook of
Reactive Chemical Hazards. See Appendix V for a table of some commonly-used laboratory chemicals and incompatibilities.

/ Do not store ethers or conjugated dienes for extended periods of time as explosive peroxides could form. Date ethers when received and opened.

/ Make sure that all electrical cords are in good condition. All electrical outlets should be grounded and should accommodate a 3-pronged plug. Never remove the grounding prong or use an adapter to bypass the grounding on an electrical cord.

/ Remain out of the area of a fire or personal injury unless it is your responsibility to meet the emergency responders. Meet responders from a safe location.

/ Be aware of the condition of fire extinguishers. Report any broken seals, damage, low gauge pressure or improper mounting to DES Fire Protection, (40)5-3960. If the seal has been broken, assume that the fire extinguisher has been used and must be recharged. (NOTE: Do not use fire extinguishers unless you are trained and feel confident to do so.) Report ALL fires by phoning 911.

/ Automatic fire sprinklers must remain clear and unblocked to function properly. Do not store materials within 18” below the sprinkler head.

HOUSEKEEPING

/ Eliminate safety hazards by maintaining laboratory work areas in a good state of order.

/ Maintain at least two clear passages to laboratory exits.

/ Always keep tables, fume hoods, floors, aisles and desks clear of unnecessary material. Wipe down bench tops and other laboratory surfaces after each use with an appropriate cleaning or disinfecting agent.

/ All equipment should be inspected before use.

/ Use borosilicate glassware for laboratory work. If dichromate/sulfuric acid glass cleaner is used in your laboratory, make sure that cleaning is confined to the fume hood as toxic chromyl chlorides are released from the dichromate/sulfuric acid solution. Better yet, switch to a non-chromate cleaning solution. (i.e., No Chromix®) which will also minimize hazardous waste generation.

/ If experiments must be left unattended, place a note next to experimental apparatus indicating the chemicals involved, your name and a number where you can be reached in case of an emergency.

/ Keep the laboratory floor dry at all times. Immediately attend to spills of chemicals or water, and notify other lab workers of potential slipping hazards.

/ All machinery under repair or adjustment should be properly tagged prior to servicing. All service work should be done by authorized personnel.
Sink traps and floor drains should be flushed and filled with water on a regular basis to prevent the escape of sewer gases or the release of chemical odors in the event of an emergency. Drains which will not be routinely used may be "topped" with 20 - 30 ml of mineral oil to prevent evaporation of water in the trap.

All compressed gas cylinders should be securely chained or clamped to a rack or fixed stationary piece of lab furniture. Mark empty cylinders, but use all safety precautions as if the cylinder were full.

EMERGENCY PROCEDURES

In the event of an emergency, remember one number: 911. By calling this number, all necessary emergency response departments can then be alerted to your needs.

Be familiar with the emergency evacuation plan.

Be sure the names and phone numbers of lab personnel to be contacted in an emergency are posted in the lab or outside of the door.

Be familiar with the location, use and limitations of the following safety devices:

- Safety shower
- Eye wash station
- Protective respiratory gear
- Fume hood
- Fire extinguisher
- Fire alarm
- Spill cleanup materials
- First aid kit

Clean up all small spills immediately. If a large chemical spill occurs, call the campus emergency phone number, 911. If the spill poses a hazard to individuals outside of the laboratory, follow the laboratory’s emergency standard operating procedure. Stop current reactions or equipment if possible, activate the building fire alarm, exit the building, call 911 to report the emergency and stand by at a safe distance to provide information to emergency response personnel.

If volatile, flammable, or toxic materials spill, shut off flames and spark-producing equipment at once and evacuate.

In the event of fire or explosion, activate the building fire alarm, exit the building, call 911 to report the emergency and standby in a safe location to meet emergency responders.

Do not cover windows of laboratory doors, except for special experimental requirements. This allows passers-by to notice if anyone is in need of emergency assistance.

Maintain a clear path to all safety equipment at all times.

WASTE DISPOSAL

MINIMIZE WASTES at the source by limiting the quantities of materials purchased and used.

Segregate and prepare chemical wastes for disposal in accordance with the procedures issued by DES. (See "UMCP Waste Disposal Guidelines" wall chart. Copies are available through DES at (40)5-3960.)
Dispose of all waste in designated containers. There are many different types of containers used at the UMCP for the collection of wastes. Know which ones are appropriate for the wastes you generate. Questions may be directed to Hazardous Waste Management, DES at (40)5-3990 or (40)5-3968.

MISCELLANEOUS

Children and pets should not be brought into the laboratory.

If work is being conducted after hours, let other laboratory personnel know of your presence. If possible, avoid carrying out experimental laboratory work in an unoccupied building.
SAFETY EQUIPMENT

An expanding array of federal, state, and local laws and regulations make the protection of worker health and safety a legal requirement as well as an economic necessity. In the final analysis, personal and laboratory safety can be achieved only by informed, responsible individuals. This section summarizes various forms of personal and laboratory safety equipment. Based on this information, knowledgeable choices for appropriate personal protection in the laboratory can be made.

PERSONAL PROTECTIVE EQUIPMENT

Eye Protection

It is easy to take your senses for granted since they function without conscious thought. It's easy to relax your guard in the laboratory environment. After all, for those people not used to wearing glasses, it can be regarded as a burdensome task to wear unattractive, often restrictive eyewear. However, the chemical laboratory is likely to be the most health-threatening place that you can encounter.

Splashing chemicals and flying objects are possible at any time in the lab environment. For this reason, eye protection is an important consideration. Protective eyewear for personnel and visitors should be splash proof. They must meet ANSI (American National Standards Institute) specifications. Approved eyewear usually bears an ANSI approval stamp on the lens or eye piece of the eyewear.

If you don't have safety glasses, tell your supervisor. They can be purchased from any safety supply company, student supply stores or Chemistry Stores (located in room 0202 of the Chemistry Building, phone (40)5-1838.)

Use and Maintenance

Eye wear should be as comfortable as possible, fit snugly over the eyes and around the face, and not interfere with the movement of the wearer.

When it is appropriate, signs should be posted outside the door stating that eye protection is required before entering the room.

Appropriate eye protection should be worn when using:

- caustics, corrosives, or irritants
- glassware under vacuum or pressure (reduced or elevated)
- cryogenic materials
- flammable materials
- radioactive materials
- explosives
- lasers (special lens protection required)
- UV light (special lens protection required)
- biohazards
Eye protection should also be worn when performing these machine shop operations:

- welding
- sanding
- grinding
- drilling
- sawing

Eye safety equipment should be capable of being cleaned and disinfected.

Eye protection should always be kept in good condition.

Corrective Lenses
Laboratory workers whose vision requires the use of corrective lenses should wear safety eye protection of one of the following types:

- Prescription lens safety splash goggles.
- Splash-proof safety eye wear that can be worn over prescription glasses without disturbing the adjustment of the glasses.

Contact Lenses
Contact lenses should not be routinely worn in the laboratory.
Laboratory personnel who must wear contact lenses while performing laboratory work should be aware of the following potential hazards:

- It may be impossible to remove contacts from the eyes following entry of some chemicals into the eye area.
- Contact lenses will interfere with emergency flushing procedures.
- Contacts may trap solid materials in the eyes.

Use of contact lenses should be considered carefully, with extra consideration given to choosing eye protection that fits snugly over the eyes and around the face.

Protective Clothing
The lab coat is designed to protect the clothing and skin from chemicals that may be spilled or splashed. It should always be properly fitted to the wearer and is best if it is knee length. There are several different types of lab coats for different types of protection.

- **Cotton** protects against flying objects, sharp or rough edges and is usually treated with a fire retardant.
- **Wool** protects against splashes of molten materials, small quantities of acid, and small flames.
- **Synthetic fibers** protect against sparks and infrared or ultraviolet radiation. However, synthetic fiber lab coats can increase the severity of some laboratory hazards. For instance, some solvents may dissolve particular classes of synthetic fibers, thereby diminishing the protective ability of the coat. In addition, on contact
with flames, some synthetic fibers will melt. This molten material can cause painful skin burns and release irritating fumes.

\(<\text{Aluminized and reflective clothing} >\) protect against radiant heat.

// The construction of the material must also be considered (twill, felt, plain, etc.), as the materials are rated differently by various manufacturers. Lab coats should be made with snaps/fasteners which afford the wearer quick removal in the event of an emergency.

\(\text{Aprons} /\) An apron provides an alternative to the lab coat. It is usually made of plastic or rubber to protect the wearer against corrosive or irritating chemicals. An apron should be worn over garments that cover the arms and body, such as a lab coat.

\(\text{Hand Protection} /\) It is a good idea to always get into the habit of wearing protective gloves in the laboratory. Aside from acting as a shield between hands and hazardous materials, some gloves can also absorb perspiration or protect the hands from heat. Because certain glove types can dissolve in contact with solvents, it is important to take extra care in matching the protective glove with the nature of the job. Before use, check to make sure the gloves (especially latex gloves) are in good condition and free from holes, punctures, and tears.

\(\text{Glove Types and Removal} /\) Gloves should be selected on the basis of the material being handled and the particular hazard involved. Glove manufacturers and the Material Safety Data Sheets (MSDSs) accompanying products in use are good sources of specific glove selection information, or contact DES for assistance in selection.

\(<\text{PVC} >\) protects against mild corrosives and irritants.

\(<\text{Latex} >\) provides light protection against irritants and limited protection against infectious agents.

\(<\text{Natural Rubber} >\) protects against mild corrosive material and electric shock.

\(<\text{Neoprene} >\) for working with solvents, oils, or mild corrosive material.

\(<\text{Cotton} >\) absorbs perspiration, keeps objects clean, provides some limited fire retardant properties.

\(<\text{Zetex®} >\) when handling small burning objects. These are a good replacement for asbestos gloves. (Asbestos containing gloves may not be purchased or used in UMCP labs since asbestos is a known carcinogen. Asbestos gloves currently located in UMCP laboratories must be disposed through the University's asbestos waste disposal system. If your laboratory currently has asbestos gloves (or products) for disposal, seal them in a plastic bag, label the contents of the bag and contact Physical Plant Work Control ((40)5-2222) for an asbestos waste pick-up.)

// When working with extremely corrosive material, wear thick gloves. Take extra precaution in checking for holes, punctures, and tears.
Care should be taken when removing gloves. Peel the glove off the hand, starting at the wrist and working toward the fingers. Keep the working surface of the glove from contacting skin during removal. Contaminated disposable gloves should be discarded in designated containers (e.g., radioactive or biohazardous waste containers).

Wash hands as soon as possible after removing protective gloves.

Foot Protection

Foot protection is designed to prevent injury from corrosive chemicals, heavy objects, electrical shock, as well as giving traction on wet floors. If a corrosive chemical or heavy object were to fall on the floor, the most vulnerable portion of the body would be the feet. For this reason, shoes that COMPLETELY COVER AND PROTECT the foot are recommended.

Fabric shoes, such as tennis shoes, absorb liquids readily. If chemicals happen to spill on fabric shoes, remove footwear immediately.

When selecting footwear for the lab, choose sturdy shoes that cover the foot. These will provide the best protection.

The following shoe types should not be worn in the laboratory:

- sandals
- clogs
- high heels
- shoes that expose the foot IN ANY WAY

The following are recommended types of footwear:

- Safety Shoes (steel-toed) protect against crushing injuries caused by impact from any object during work activities (e.g., lifting heavy objects, using power tools, etc.).
- Treated Shoes, Rubber Boots or Plastic Shoe Covers protect against corrosive chemicals.
- Insulated Shoes protect against electric shock.
- Rubber Boots with slip resistant outer soles provide traction in wet conditions where the possibility of slipping exists.

Safety Shoes, Rubber Boots or Plastic Shoe Covers protect against specific types of chemical contamination and like gloves must be selected to match the current hazard.
Hearing Protection

DES will respond to inquiries regarding noise exposure in the workplace. Upon request, the staff of DES will conduct environmental noise and/or personal exposure dosimetry. Ear protection should be worn where the noise level is above 85 decibels (dBA). Areas where excessive noise is present should be posted with signs indicating ear protection is required. Ear protectors should be readily available and rated for sufficient noise reduction. Contact DES for assistance in selecting appropriate hearing protection for your situation.

Noise reduction ratings (NRR) for hearing protection products must be listed on hearing packaging. The NRR number is used in context of the following formula:

\[
\text{Noise Dose in dBA} = \text{dBA}_{\text{TWA8}} - (\text{NRR} - 7)
\]

- **Ear plugs** provide basic protection to seal the ear against noise.
- **Ear muffs** provide extra protection against noise, and are more comfortable than ear plugs.
- **Cotton inserts** are poor suppressors of noise and should be avoided.

Head Protection

Some environments within UMCP have the potential for falling or flying objects. Appropriate head protection can protect laboratory workers from impacts, penetration by falling or flying objects, electric shock and burns.

Unrestrained long hair can be hazardous. The use of caps, elastic bands or hair nets will prevent the hair from coming in contact with instrument/machinery parts, chemicals or flame-producing sources.

Respiratory Protection

Because certain laboratory procedures can produce noxious fumes and contaminants, respiratory protection may be required in your work environment. In fact, lab personnel noting changes in air quality should contact their LS/PI or DES, (40)5-3960 and express their concerns. When engineering controls cannot successfully minimize or eliminate the potentially harmful fumes, a respiratory protection program should be established.

Departments must refer individuals who need respiratory protection to DES for assistance in respirator selection, fit testing and training. A medical examination provided through the University Health Center is also required to assure the potential respirator wearer is physically capable of respirator use.
LABORATORY SAFETY EQUIPMENT

Laboratory Chemical Fume Hood

Chemical fume hoods capture, contain, and expel emissions generated by hazardous chemicals. In general, it is a good idea to conduct all laboratory chemical experiments in a fume hood. While you may be able to predict the release of undesirable or hazardous effluents in some laboratory operations, "surprises" can always happen. Therefore, the fume hood offers an extra measure of protection.

Before use, check to see that your hood has an inspection tag. This will tell you the date of the most recent hood evaluation. If the fume hood in your lab does not appear to be in good working order (a tissue, held inside the fume hood, can indicate if airflow is present), or if you have any questions, call DES. (NOTE: Do not allow tissues or other material to be pulled into the hood exhaust system as this may damage the unit or affect the air flow.)

Certain laboratory procedures may require the use of perchloric acid. The use of this material may cause the formation of explosive perchlorate crystals. Special fume hoods, commonly known as Perchloric Acid Fume Hoods, MUST be used for this purpose. These hoods have self-contained wash-down units to inhibit crystal formation.

Operation

- All laboratory workers with access to a laboratory chemical fume hood should be familiar with its use.
- Maintain the sash at or below the optimum operating height as designated by the label with an arrow.
- The optimum condition for general laboratory work in a chemical fume hood is between 80 and 125 fpm face velocity in a well installed unit. Radioactive materials use requires a face velocity of 100 fpm or greater at a minimum sash height of 12 inches. Higher face velocities often produce turbulence inside of the hood sufficient to eject contaminants into the laboratory.
- Raise large objects that must be in the hood (i.e., a water bath) to allow airflow beneath and on all sides of the object.
- **ALWAYS** work back into the hood, six inches beyond the sash line, keeping the sash line between your body and your work.

Maintenance

- Keep the inside of the hood clean and uncluttered.
- The hood should always be in good condition and capable of routine use. Any hood or component of ventilation not properly functioning must be taken out of service and clearly tagged.
- The lab worker should not be able to detect strong odors released from materials in the hood. If odors are detected, check to make sure that the ventilation fan is turned on. If the fume hood is malfunctioning, discontinue work and call Physical Plant Work Control at (40)5-2222.
- An emergency plan should exist in case of hood ventilation malfunction.
All protective clothing should be worn when working with chemicals in the hood. In addition to gloves, safety glasses, and lab coats, a face shield or explosion shield will provide an extra measure of safety from reactive chemicals.

Solid objects or materials should not be allowed to enter the exhaust ducts at the rear of the hood, as they can become lodged in the duct or fan.

Fume hoods should not be used for long-term chemical storage.

Storage of flammables and corrosives in the lab should be limited to as small a quantity as possible. Flammable materials should be stored in flammable material storage cabinets which meet OSHA 1910.106d and NFPA 30 specifications. These specifications are available from DES.

Chemicals should NEVER be stored in alphabetical order without consideration for chemical compatibilities. This system may contribute to the probability of incompatible materials being stored next to one another (e.g., butadiene next to bromine or chlorine). Incompatible reagents should not be stored next to each other. (See the chemical incompatibility chart in the appendices of this manual.)

Storage outside of the cabinet should be limited to materials used in the current process.

The vent cap on chemical storage cabinets should not be removed unless the cabinet is attached to an approved ventilation system.

If a cabinet is connected to a ventilation system, the connection must either have a thermally actuated damper or sufficient insulation on the vent piping to avoid compromising the fire protection ability of the cabinet.

Glass containers should be stored on the bottom shelf of storage cabinets.

Flammable liquid cabinets are designed for storage of flammable or combustible liquids.

Acid/corrosive cabinets are designed for corrosion resistance.

Bulk storage cabinets can be used for storage of flammable and corrosive liquids outside the laboratory setting.

A safety can is an approved container of no more than five gallons (19 liters) capacity. It has a spring-closing lid and spout cover, and is designed to safely relieve pressure buildup within the container.

Vent caps may be purchased for original manufacturers' glass containers to help minimize explosion hazards.
Refrigerators While domestic refrigeration units are appropriate for keeping foods cold, they are not designed to meet the special hazards presented by flammable materials. Therefore, laboratory refrigerators should be carefully selected for specific chemical storage needs. To prevent potential safety hazards, the length of storage of any material should be kept to a minimum. In addition, refrigerators should be periodically inspected. Refrigerators used to house flammable materials must be approved for such use by FM® (Factory Mutual) or UL® (Underwriters Laboratory).

Use and Maintenance Each refrigerator, freezer or other cooling unit should be prominently labeled with appropriate hazard signs to indicate whether it is suitable for storing hazardous chemicals. Label chemical hazard refrigerators with the sign "For Chemical Storage Only. No Food or Drink Allowed."

/ If radioactive materials are to be stored, a refrigerator must be clearly labeled "Caution, Radioactive Material. No Food or Beverages May Be Stored in This Unit."

/ The containers placed in the refrigerator should be completely sealed or capped, securely placed, and labeled. Avoid capping materials with aluminum foil, parafilm, corks, and glass stoppers.

/ Refrigerators should be frost free to prevent water drainage.

Types of Refrigerators Because ignitable vapors can build up in refrigerators, it is important to store flammable and combustible materials in specially-designed units. These refrigerators will have self-contained electrical elements to avoid spark-induced explosions.

< Explosion-proof or intrinsically safe refrigerators are specifically designed for hazardous environments, featuring enclosed motors to eliminate sparking and bear a FM or UL explosion-proof label.

< Highly volatile flammable and combustible substances that require refrigeration may be stored only in explosion-proof refrigerators especially designed for such use. Such refrigerators must meet the requirements for Class 1 Division 1 Electrical Safety Code (NPFA 70 and NFPA 45) and require direct wiring to the power source via a metal conduit. The same storage requirements apply to any solution or specimen that may release flammable fumes (e.g., the ether-impregnated fur of a dead rat has been known to cause an explosion in a refrigerator).

Eyewash Stations Eyewash stations provide an effective means of treatment when chemicals come in contact with the eyes. Eyewash stations should be readily available and accessible to all laboratory personnel.

/ The eyewash facility should be clearly marked and no more than 100 feet, or 10 seconds, away from every lab work station. Laboratory workers should be able to locate the nearest eye wash facility with their eyes closed (eye injuries may involve temporary blindness).
An eye injury usually accompanies a skin injury. For this reason, eye wash stations should be located near the safety shower and/or drench hose so that eyes and body can be washed.

Water/eye solutions should not be directly aimed onto the eyeball, but rather, aimed at the base of the nose. This increases the chance of effectively rinsing the eyes free of chemicals (harsh streams of water may drive particles further into the eyes).

- Eyelids may have to be forcibly opened to attempt eye rinse.
- Flood eyes and eyelids with water/eye solution for a minimum of 15 minutes.
- Remove contact lenses as soon as possible to rinse eyes of any harmful chemicals.
- Eye wash stations should be drained and tested weekly by laboratory personnel and inspected every six months.

Types of Eye Wash Stations
- **Gravity Feed - Self Contained** provides the laboratory worker with emergency eye wash treatment in areas inaccessible to plumbing.
- **Faucet-mounted** (pin or push plate activators) provides continuous water flow while freeing hands to open eyelids. It turns a standard faucet into a practical emergency eye wash station.
- **Laboratory Bench spray** with squeeze handles can be installed through the bench top for instant availability, but does not satisfy OSHA requirements as an accessible eyewash.
- **Swivel Eye Wash** mounts on lab bench or counter top adjacent to a sink. It swivels 90° over the sink for use, or out of the way for storage.
- **Bowl-mounted** (pin, push plate or foot pedal activators) provides continuous water flow through a free-standing plumbed unit. The bowl may be directed to a floor drain or connected directly to a sewer connection for easy testing and use.

Safety Showers
Safety showers provide an effective means of treatment in the event that chemicals are spilled or splashed onto the skin or clothing. Safety shower facilities should be installed wherever corrosive chemicals are used (e.g. acids or alkalis) and must be readily available to all personnel.

Safety showers should be in a clearly marked location. The facility should be no more than 100 feet, or 10 seconds, away from every lab work bench.

Laboratory workers should be able to locate the shower(s) with their eyes closed (emergency situations may leave victims temporarily blind).

Safety showers are operated by grasping a ring chain or triangular rod.
The pull mechanism is designed for people of most heights but may require a modification for wheelchair access. It should always be accessible and hang freely.

Safety showers should supply a continuous stream of water to cover the entire body.

Individuals should remove contaminated clothing, including shoes and jewelry, while under an operating shower.

Safety showers should be located AWAY from electrical panels or outlets.

If at all possible, safety shower facilities should be installed near appropriate drainage systems.

Types of Safety Showers

- **Ceiling/Wall Emergency Shower** provides a continuous water flow and mounts directly to overhead vertical pipes or horizontal wall pipes.

- **Floor-Mounted Emergency Combination** eye wash/face and body wash mounts directly to horizontal pipes.

- **Deck-Mounted Drench Hose** is a hand operated unit intended to augment a safety shower for quick spot-washing of injuries.

Fire Safety Equipment

Types of Equipment

- **Fire Alarms** are designed so that all endangered laboratory personnel and building occupants are alerted by an audible warning (in many buildings there is also visual warning). Fire alarm systems are **not** monitored at a remote location. Fire alarm activations **must be reported** to Emergency Assistance (911) from a safe location.

 < All employees/students should become familiar with the EXACT LOCATION of the fire alarm pull stations nearest to their laboratory.

 < Sprinkler systems, smoke detectors and heat detectors may automatically activate the fire alarm. (This **should not** be considered a substitute for manual fire alarm activation.)

- **Fire Extinguishers** are spaced and located as required by current fire codes and standards. Multipurpose fire extinguishers can be found in hallways and near exits in most laboratories. Additional or redundant extinguishers will only be provided at a charge to the requestor (Note: Special purpose fire extinguishers are provided where necessary).

 < Only use a fire extinguisher if the fire is very small and you know how to use the extinguisher safely. If you can't put out the fire, leave immediately. Make sure the fire department is called even if you think the fire is out.
< In laboratories, fire extinguishers should be securely located on the wall near an exit. The lab occupant should be aware of the condition of the fire extinguishers by observing them for broken seals, damages, low gauge pressure, or improper mounting.

< DES Fire Protection performs annual maintenance on all fire extinguishers. The last month and year that maintenance was performed is indicated on a tag or sticker on the extinguisher.

< Occupants of labs should visually inspect lab fire extinguishers at least monthly. Units that are missing, have broken seals, low pressure or visible damage should be reported to DES Fire Protection immediately for replacement.

< For fire extinguisher service, requests, training, or any questions call DES Fire Protection at (40)5-3960.

/ Sprinklers are designed to enhance life safety by controlling a fire until the fire department arrives or, in many cases, completely extinguishes a fire.

< Sprinklers are automatically activated, and laboratory workers should not attempt to shut off or tamper with the system.

< Items in the laboratory must be stored at least 18 inches below the sprinklers.

< Items (e.g., wiring or tubing, etc.) must not hang from the sprinklers or sprinkler pipes.

< Sprinklers must not be painted or otherwise obstructed.

< Intense heat should not be used near sprinklers.

/ If there are any questions on fire safety equipment call DES Fire Protection at (40)5-3960. Call Work Control Center, (40)5-2222, to report damage to fire alarm or sprinkler systems.
Laboratory Equipment Safety

Glassware Accidents involving glassware are a leading cause of laboratory injuries. These can be avoided by following a few simple procedures. In general, be certain that you have received proper instructions before you use glass equipment designed for specialized tasks that involve unusual risks or potential injury. Listed below are some safety rules.

- Use and handle and store glassware carefully so as not to damage it or yourself.
- Properly discard or repair damaged items.
- When inserting glass tubing into rubber stoppers, corks or when placing rubber tubing on glass hose connections:
 - protect hands with a heavy glove or towel
 - lubricate tubing or stopper with water or glycerol and be sure that the ends of the glass tubing are fire-polished
 - hold hands close together to limit movement of glass should fracture occur
 - substitute plastic or metal connections for glass ones whenever possible to decrease the risk of injury
 - use glassware designed for vacuum work for that purpose
 - when dealing with broken glass
 - wear hand protection when picking up the pieces
 - use a broom to sweep small pieces into a dustpan
 - package it in a rigid container (i.e. corrugated cardboard box) and seal to protect personnel from injury.
- Never attempt glass-blowing operations without proper facilities.

Heating Devices Electrical devices that supply heat for reactions or separations are commonly used in laboratories. Electrically heated devices include:

- hotplates;
- heating mantles;
- oil baths;
- air baths;
- hot-tube furnaces;
- hot-air guns; and
- ovens

Improper use could result in fire or burns to the user.
If baths are required to be activated when not attended, they should be equipped with timers to turn them on and off at suitable hours and, if possible, a thermostat to turn off power if the unit overheats.

Flammable or combustible solvents should never be used in a heated bath unless housed in a chemical fume hood.

Before using any heating device:

- check to see if the unit has an automatic shutoff in case of overheating;
- note the condition of electrical cords and have them replaced as required;
- make sure the apparatus has been maintained as required by the manufacturer;
- make sure the device maintains a Underwriters' Laboratories (UL®) or Factory Mutual Engineering Division of Associated Factory Mutual Fire Insurance Companies (FM®) listing;
- check to see that all heating units in use without automatic shut-off have been turned off before leaving an area for any extended period of time.

VACUUM SYSTEMS

Every laboratory vacuum pump must have a belt guard in place when it is in operation.

The service cord and switch, if any, must be free of observable defects.

Use a trap on the suction line to prevent liquids from being drawn into the pump.

If vapors are being drawn through the pump, a cold trap (which is a tube that will condense vapors passing through it) should be inserted in the suction line to prevent contamination of the pump oil.

Place a pan under the pump to catch any oil drips.
Explosion In order to prevent explosions:

Prevention

<table>
<thead>
<tr>
<th>IF THE PUMP IS USED...</th>
<th>YOU MUST...</th>
</tr>
</thead>
<tbody>
<tr>
<td>for vacuum distillation or filtration of organic liquids</td>
<td>direct the discharge to an operating hood or other exhaust system.</td>
</tr>
<tr>
<td></td>
<td>discharge into an enclosed space such as a cabinet can cause explosion.</td>
</tr>
<tr>
<td>in an area where flammable gas, vapor, or dust are present.</td>
<td>ensure that the motor, cord, plug, and all electrical parts are explosion-proof.</td>
</tr>
</tbody>
</table>

Glassware / Glassware used for vacuum distillations or other uses at reduced pressure must be properly chosen for its ability to withstand the external pressure of the atmosphere.

< Only round-bottom vessels may be subjected to vacuum unless specially designed, such as Erlenmeyer-type filtration flasks.

< Each vessel must be carefully inspected for defects such as scratches or cracks.

All vacuum operations must be carried out behind a table shield or lowered fume hood sash because all vacuum equipment is subject to failure by implosion. (Implosion occurs when atmospheric pressure propels pieces inward creating small fragments which are subsequently propelled outward with considerable force.)

Dewar vessels have a vacuum between the walls and some types can be dangerous when they fail.

< Glass types can propel glass into the eyes and should be wrapped from top to bottom with cloth tape such as electrician's friction tape. (Mylar tape can be used if transparency is needed.)

< Large Dewars encased in metal and stainless steel vacuum containers do not require wrapping.

Glass desiccators are often subjected to partial vacuum due to cooling of the contents. Due to glass thickness and the relatively flat surface of the top and bottom, the desiccator is under a constant tension. It is strongly recommended that you either:

< obtain the available desiccator guard made of perforated metal, or
< use a molded plastic desiccator which is spherical and has high tensile strength.
CENTRIFUGES

Use and Maintenance

Do not attempt to operate a centrifuge until you have received instruction in its specific operation. Read the operation manual, if available, and ask an experienced colleague to demonstrate procedures.

Individual users are responsible for the condition of the centrifuge machine and rotors during and at the end of procedures. This responsibility includes proper loading, controlling speed to safe levels, safe stopping, removal of materials, and cleanup.

Ultra centrifuge rotors require special cleaning procedures to prevent scratching of surfaces, which can lead to stress points and possible rotor failure during operation.

In selecting a centrifuge, carefully consider:

- location, type, and use
- balance capability each time the centrifuge is used
- adequate shielding against accidental "flyaways"
- suction cups or heel brakes to prevent "walking"
- accessibility of parts, particularly for rotor removal
- lid equipped with disconnect switch which shuts off rotor if the lid is opened
- safeguard for handling flammables and pathogens. (This may include positive exhaust ventilation, a safe location or sealed cups.)
- positive locking of head
- electrical grounding
- locations where vibration will not cause bottles or equipment to fall off shelves

POTENTIAL PROBLEMS TO WATCH FOR

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>EFFECT</th>
<th>PRECAUTION AGAINST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbalanced load</td>
<td>Damage to seals or other parts</td>
<td>Keep lid closed during operation and shut down and stop the rotor if you observe anything abnormal, such as: --noise --vibration</td>
</tr>
<tr>
<td>Broken tubes</td>
<td>Centrifuge contamination and personal injury</td>
<td>When loading the rotor: --examine tubes for signs of stress --discard tubes that look suspicious</td>
</tr>
</tbody>
</table>
FIRST AID AND EMERGENCY PROCEDURES

The first aid and emergency procedures detailed in this section could be life-saving. Become familiar with the information described below, so that disasters can be speedily contained. It is the responsibility of the injured employee or student to report bodily injury or property damage to DES at (40)5-3976 even if a police report is filed. Supervisors of injured employees must complete the "Workers Compensation Employer's First Report of Injury or Illness" form to report on-the-job injury. Required forms and instructions will be provided to the injured individual by the University Health Center at the time of initial visit to be returned to their supervisor for completion. If treatment is obtained at a location other than the University Health Center, it is the employee's responsibility to obtain the compensation forms from the University Health Center, complete the forms and return them to the University Health Center. For more information concerning Workers' Compensation contact the Health Center at (31)4-8171.

FIRST AID

Wounds

- Small cuts and scratches
 - Direct pressure -- place sterile pad over wound and apply pressure evenly with the opposite hand.
 - Elevation -- if direct pressure does not control bleeding, raise the area above the level of the heart.
 - Cleanse area with soap and water.

- Significant bleeding
 - Call Emergency Rescue (911).
 - Direct Pressure -- place sterile pad over wound and apply pressure evenly with the opposite hand.
 - Elevation -- if direct pressure does not control bleeding raise the area above the level of the heart.

Thermal

- First degree burns (e.g., sunburn or mild steam burn) are characterized by redness or discoloration of the skin, mild swelling and pain.
 - First Aid procedures for first degree burns are as follows:
 6 Apply cold water applications and/or immerse in cold water for at least 10 minutes.
 6 Seek further medical treatment as needed.

- Second and third degree burns are characterized by red or mottled skin with blisters (second degree), white or charred skin (third degree).
 - First aid procedures for second and third degree burns are as follows:
 6 Call Emergency Rescue (911).
 6 Wrap area in clean, dry material.
Chemical Burns

If hazardous chemicals should come into contact with the skin or eyes, follow the first aid procedures below.

/ Skin
6 Remove victim's clothes -- don't let modesty stand in the way.
6 Remove victim's shoes -- chemicals may also collect here.
6 Rinse the area with large quantities of water for at least 15 minutes (sink, shower, or hose).
6 DO NOT apply burn ointments/spray to affected areas.
6 Call Emergency Rescue (911) without delay.

/ Eyes (acid/alkali, e.g., HCl, NaOH)
6 Call Emergency Rescue (911) without delay.
6 Rinse area of eyes, eyelids, and face thoroughly with lukewarm water for at least 15 minutes at the eye wash station.

Ingestion of Chemicals

/ Call Emergency Rescue (911) IMMEDIATELY.
< Call the University Health Center Urgent Care at (31)4-8162 or Maryland Poison Center at 1-800-492-2414 for advice on appropriate actions to be taken while awaiting emergency medical assistance.
< If the victim is unconscious, turn their head or entire body onto their left side. Be prepared to start CPR if you are properly trained, but be cautious about exposing yourself to chemical poisoning via mouth-to-mouth resuscitation. If available, use a mouth-to-mask resuscitator.

Inhalation of Chemicals

/ Evacuate the area and move the victim into fresh air.
< Call Emergency Rescue (911) without delay.
< If the victim is not breathing and you are properly trained, perform CPR until the rescue squad arrives. Be careful to avoid exposure to chemical poisoning via mouth-to-mouth resuscitation. Use a mouth-to-mask resuscitator.

/ Treat for chemical burns of the eyes and skin as noted above.

FIRST AID KITS

First aid kits should be standard equipment in every laboratory. Commercial, cabinet-type, or unit-type first aid kits are acceptable. A typical first aid kit for laboratories includes a variety of items specially selected to carry out emergency treatment of cuts, burns, eye injuries, or sudden illness. The first aid kit should contain individually sealed packages for each type of item. Contents of the kit should be checked weekly to ensure that expended items are replaced. Laboratory supervisors are responsible for maintaining the contents of the first aid kits.
kit. Kits are available from most general safety or lab supply houses. For assistance in locating a supplier call Campus General Stores at (40)5-7337 or (40)5-5854.

No oral medication (including aspirin) should be dispensed from the first aid kit.

CPR TRAINING
CPR Training for adults, children and infants is available to all faculty, staff and students at a nominal charge from the University Health Center CPR Training Center. For registration information or a class schedule call the CPR Training Center at (31)4-8132.

EMERGENCY PROCEDURES

NOTE: Emergency assistance for all types of emergencies may be obtained 24 hours a day by dialing the emergency assistance number, 911, from any campus or off campus phone or by simply picking up the receiver of any emergency phone on campus. Emergency phones inside of campus buildings are yellow. Outside emergency phones may be recognized by blue lights above the telephone. Emergency telephones only reach the emergency dispatcher and may not be used to reach other local or campus numbers. If you must use a pay phone in an emergency, you may dial 911 without inserting a coin.

Chemical Spills / General Safety Guidelines. The procedures described below are to be used for small chemical spills where materials for clean-up are available in the lab and if employees have received training in their use. For larger spills call the campus emergency phone number at 911. When unsure of how to clean up small amounts of a material, notify your supervisor or call DES at (40)5-3960.

See the "UMCP Hazardous and Regulated Waste Management Plan" for more information.

< Locate spill cleanup materials. Laboratories should be equipped with spill cleanup kits. If your laboratory area does not have such emergency items, the supervisor can contact DES for assistance in obtaining the appropriate material.

< Wear the appropriate personal protective equipment (e.g., gloves, goggles) when cleaning up spills.

/ Acid Spills

6 Apply neutralizer (or sodium bicarbonate) to perimeter of spill.
6 Mix thoroughly until fizzing and evolution of gas ceases. NOTE: It may be necessary to add water to the mixture to complete the reaction. Neutralizer has a tendency to absorb acid before fully neutralizing it.
6 Check mixture with pH indicator paper to assure that the acid has been neutralized.
6 Transfer the mixture to a plastic bag, tie shut, fill out a waste label, and place in the fume hood. Notify supervisor or call DES for disposal.
Caustic Spills

6 Apply neutralizer to perimeter of spill.
6 Mix thoroughly until fizzing and evolution of gas ceases.
6 Check mixture with pH indicator paper to assure that the material has been completely neutralized.
6 Transfer the mixture to a plastic bag, tie shut, fill out a waste label, and place in the fume hood. Notify supervisor or call DES for disposal.

Solvent Spills

6 Apply activated charcoal to the perimeter of the spill.
6 Mix thoroughly until material is dry and no evidence of liquid solvent remains.
6 Transfer absorbed solvent to a plastic bag (if compatible), tie shut, fill out and attach a waste label, and place in the fume hood. Notify supervisor or call DES for disposal.

Mercury Spills

6 Using a mercury vacuum available through DES, vacuum all areas where mercury was spilled with particular attention to corners, cracks, depressions and creases in flooring or tabletops.
6 Call DES for mercury vacuum delivery or pick-up.
6 To clean up small spills with a mercury spill kit, dampen the mercury sponge with water, then wipe the contaminated area.
6 Do this procedure slowly to allow for complete absorption of all free mercury. A silvery surface will form on the sponge.
6 Place the contaminated sponge in its plastic bag, tie shut, fill out and attach a waste label, and place in the fume hood. Notify supervisor or call DES for disposal.
6 For larger spills that cannot be cleaned up by lab occupants, call DES Hazardous Waste Management at (40)5-3968 or the campus emergency number (911).

Radioactive Material Spills

In the event of any occurrence out of the ordinary involving radioactive materials or radiation producing equipment see the radiation emergency procedures guide located on page 33 of the "Radiation Safety Manual" (reprinted in the Appendix III of this document) and contact the Radiation Safety Officer (RSO) via the campus emergency number (911). If contaminated, do not leave the area of the spill until you are decontaminated by DES Radiation Safety unless you have serious injury. Any event involving radioactive materials must be reported to the RSO as some circumstances require immediate notification to State Authorities.
Biohazard / Spills

Appropriate personal protective measures must be taken for cleanup of potentially-infectious wastes. Laboratories using infectious agents should be certified at the appropriate biosafety level as defined by the Centers for Disease Control and Prevention - National Institutes of Health by the UMCP Biosafety Officer (BSO) through the Biological and Chemical Hygiene Committee (BACH). Procedures for containing and cleaning up spills of infectious agents will be reviewed and approved by the BSO as part of the certification process. Contact the UMCP BSO at (40)5-3960 for more information or to schedule an appointment.

See the UMCP “Bloodborne Pathogens Exposure Control Plan” or call DES for more information.

Fire Safety

Written / Laboratory supervisors must be knowledgeable of the UMCP Policy Concerning Plan Fire Emergencies (see Appendix VI). This official policy describes the procedures occupants must take in the event of fire or other emergencies.

Laboratory supervisors should develop a plan which incorporates specific instructions relating to their laboratories into the UMCP Policy Concerning Fire Emergencies. Specific instructions should include:

- Location of exits and emergency escape routes.
- Locations of fire alarm pull stations and emergency phones.
- Operations to be shut down, turned off or secured before evacuation without placing personnel in danger.
- A location for laboratory personnel to meet and the procedure to account for personnel after an evacuation.
- Laboratory supervisors should review the plan with new employees and students and annually with all personnel.

The laboratory-specific fire emergency plan should be posted in the laboratory.

DES Fire Protection can assist in developing a plan, call (40)5-3960.

Small / Laboratory Fires

Small fires which are contained in beakers or flasks can be extinguished by covering the fire with a larger beaker if the laboratory personnel are confident to do so.

DO NOT attempt to fight a fire that cannot be extinguished immediately by covering with a larger beaker. Initiate the fire emergency procedures located in Appendix VI.
Individual on Fire

The rescuer should instruct the victim to **STOP - DROP - ROLL**. Victims should also place their hands over their face.

The victim should **NOT** run to a fire blanket. If a fire blanket is available, it may be used by a rescuer to smother the flames.

DO NOT use fire extinguishers to extinguish a person that is on fire.

DO NOT attempt to remove clothing from burned areas.

Call for emergency assistance (911) immediately.

DO NOT put water on large burns.

Keep burned areas clean and dry.

Keep victim calm.

For information or questions on fire emergency procedures, call the DES Fire Protection at (40)5-3960.
PROPERTIES OF HAZARDOUS CHEMICALS

FLAMMABILITY

Flammability is a measure of how easily a gas, liquid, or solid will ignite and how quickly the flame, once started, will spread. The more readily ignition occurs, the more flammable the material. Flammable liquids themselves are not flammable; rather, the vapor from the liquids are combustible. There are two physical properties of a material which indicate its flammability: flash point and volatility (boiling point).

The flash point of a material is the temperature at which a liquid (or volatile solid) gives off vapor in quantities significant enough to form an ignitable mixture with air. Given an external source of ignition (i.e., spark, flame), a material can ignite at temperatures at or above its flash point. The flash point of ethyl ether, a highly flammable solvent, is -49°F. Kerosene has a flash point between 100°F and 150°F. Flammable gases have no flash point, since they are already in an ignitable form.

The volatility of a material is an indication of how easily the liquid or solid will pass into the vapor stage. Volatility is measured by the boiling point of the material -- the temperature at which the vapor pressure of the material is equal to the atmospheric pressure. The term volatility is often mistakenly used as a synonym for flammability. There are some materials that are volatile but not flammable such as water, chloroform and mercury.

Some materials are pyrophoric, meaning that they can ignite spontaneously with no external source of ignition. Potassium metal, for example, can react with the moisture in air. This reaction causes hydrogen gas to be evolved, and the heat generated by the reaction can be hot enough to ignite the hydrogen.

Examples of commonly-used flammable chemicals.

- acetone
- ethyl ether
- sodium
- hydrogen
- lithium
- acetylene
- ethyl alcohol
- potassium

Labeling & Information

Each container of flammable liquid should be properly labeled before use.

Flammability information may be indicated on the label by a picture of a flame, a flame in a red diamond, a numeric code in a NFPA Hazard Rating system diamond or by the words flammable or combustible.

Flammability information can be found on the MSDS under Fire and Explosion Data. Flash point and boiling point information can be found in the section entitled Physical Properties.

Storage

Flammable materials should never be stored near acids or oxidizers.

Keep storage areas cool to decrease the possibility of formation of vapors in excess of the lower flammable limit for the material or autoignition in the event that vapors mix with air. Adequate ventilation should be provided to prevent vapor build-up under normal storage conditions.
Do not store flammable materials in conventional (non-explosion proof) refrigerators. Sparks generated by internal lights or thermostats may ignite flammable material inside the refrigerator, causing an extremely dangerous explosion hazard.

Storage areas should have spill cleanup materials and an emergency plan nearby, including the location of the nearest fire alarm pull station. Do not attempt to extinguish a fire in a flammables storage area.

Storage areas should be inspected periodically for deficiencies, and storage of flammable materials should be kept to a minimum.

"NO SMOKING" signs should be clearly posted where flammable materials are stored.

Flammable liquids can be separated into 3 classifications based on their flash point and boiling point. Based on these classifications, NFPA has published limits for maximum size and quantity of specific flammable liquid storage containers. OSHA standards enforce these limits for storage in laboratories.

<table>
<thead>
<tr>
<th>FLAMMABILITY (°F)</th>
<th>MAX. SIZE PER CONTAINER TYPE</th>
<th>MAX. QTY PER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flash Point</td>
<td>Boiling Point</td>
</tr>
<tr>
<td>Flammable Liquids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class IA</td>
<td>below 73</td>
<td>below 100</td>
</tr>
<tr>
<td>Class IB</td>
<td>below 73</td>
<td>above 100</td>
</tr>
<tr>
<td>Class IC</td>
<td>73 - 100</td>
<td>N/A</td>
</tr>
<tr>
<td>Combustible Liquids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class II</td>
<td>100 - 140</td>
<td>N/A</td>
</tr>
<tr>
<td>Class II A</td>
<td>140 - 200</td>
<td>N/A</td>
</tr>
<tr>
<td>Class II B</td>
<td>> 200</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* U.L. Approved
9 Max. 3 cabinets per fire area
A maximum of 10 gal. of class I and/or II liquids may be stored in any fire area outside of safety cans.
A maximum of 25 gal. of class I and/or II liquids may be stored in any fire area inside of safety cans.

Handling

Use gloves and splash-proof safety goggles when handling flammable liquids.

Mixtures of flammable or combustible liquids should be treated as though the mixture had the lowest flash point represented.

Dispensing of flammable or combustible liquids should only be carried out under a fume hood or in an approved storage room.
When transferring or using a flammable liquid, all ignition sources should be eliminated from the area. **Open flames or hot plates should NOT be used to directly heat flammable liquids.**

DO NOT use water to clean up flammable liquid spills.

DO NOT dispose of flammable or combustible liquids in the sink or drain. Follow disposal procedures issued by DES in the "UMCP Hazardous and Regulated Waste Management Manual".

"NO SMOKING" signs should be posted where flammable liquids are being handled.

CORROSIVITY

Gases, liquids, and solids can exhibit the hazardous property of corrosivity. Corrosive materials can burn, irritate, or destructively attack skin. When inhaled or ingested, lung and stomach tissue are affected. **Corrosive gases** are readily absorbed into the body through skin contact and inhalation. **Corrosive liquids** are frequently used in the laboratory and have a high potential to cause external injury to the body. **Corrosive solids** often cause delayed injury. Because corrosive solids dissolve rapidly in moisture on the skin and in the respiratory system, the effects of corrosive solids depend largely on the duration of contact.

Materials with corrosive properties can be either **acidic** (low pH) or **basic** (high pH). Examples of corrosives are listed below:

- sulfuric acid < hydrochloric acid
- nitric acid < ammonium hydroxide
- sodium hydroxide < chromium trioxide

Labeling & Information

The corrosive label normally depicts the corrosion of a hand and bar of steel.

Information on corrosivity can be found in the MSDS under **Health Effects and First Aid**.

Storage

Segregate acids from bases, and corrosive materials from both organic and flammable materials.

Store corrosive materials near the floor to minimize the danger of falling from shelves.

Store in cool, dry, well-ventilated areas and away from sunlight. The storage area should not be subject to rapid temperature changes.

Handling

Wear adequate protective equipment (lab apron, appropriate gloves and splash-proof eye protection). If splashing is a definite hazard, face shields must also be worn.

Corrosive materials should be handled in a fume hood to protect the user from the possible generation of hazardous or noxious fumes.
Add reagents slowly. Always add acids to water (never water to acid). During the addition of reagents, allow acid to run down the side of the container and mix slowly.

Corrosive materials should be transported in unbreakable containers.

For cleaning corrosive spills, refer to Emergency Procedures.

Reactivity

Explosives

Explosive materials are chemicals that cause a sudden, almost instantaneous release of large or small amounts of pressure, gas and heat when subjected to sudden shock, pressure or high temperature.

Some substances, under certain conditions of shock, temperature or chemical reaction, can explode violently. Such explosions present many hazards to laboratory personnel.

- flying glass can seriously lacerate skin
- fires can result from burning gases
- corrosive or toxic substances can be liberated

Before working with explosive materials, understand their chemical properties, know the products of side reactions, the incompatibility of certain chemicals, and monitor possible environmental catalysts (such as temperature changes).

Examples of materials that may be explosive under some conditions of use:

- acetylene
- azide
- hydrogen
- nitro compounds
- ammonia
- organic peroxides
- perchlorates
- bromates

Labeling & Information

Information on explosives can be found on the MSDS under Fire and Explosion Data.

Storage & Handling

Explosion hazards. AVOID:

- allowing picric acid to dry out
- mixing flammable chemicals with oxidants
- flammable gas leaks
- heating compressed or liquefied gas
- uncontrollable or fluctuating temperatures during experiments using explosive chemicals
- bringing hot liquid (e.g., oil) into sudden contact with a material possessing a lower boiling point
- contacting flammable materials with catalysts (e.g., acids or bases catalyze an explosive polymerization of acrolein)
- explosive peroxide generation products that build up in solvent containers during storage
- mixing nitric acid with acetone
- distilling ethers unless free from peroxides
Carefully plan a procedure for working with explosive materials.

- Insert experimental apparatus into a dry glove box or gas blanket.
- Minimize storage of ethers.
- Keep specified fire extinguishing equipment near the explosive chemical work space.
- Determine all explosive hazards prior to experimental work, including the stability of reactants/products.

For more information, contact DES at (40)5-3960.

Oxidizers

An oxidizing agent is a chemical used to provide oxygen for chemical reactions. Oxidizers spontaneously evolve oxygen at room or slightly elevated temperatures, and can explode violently when shocked or heated. Because they possess varying degrees of chemical instability, oxidizing agents are explosively unpredictable and, therefore, represent a particularly hazardous safety threat.

Examples of oxidizing agents:

- peroxides
- hyperperoxides
- peroxyesters

Oxidizers can react violently when in contact with organics. For this reason, avoid interactions between oxidizers and organic materials. Examples of organic-reactive oxidizers include nitric acid, chromic acid, and permanganates.

Peroxides

Some organic compounds, such as ethers, can react with oxygen from the air, forming unstable peroxides. Peroxide formation can occur under conditions of normal storage, when compounds become concentrated by evaporation, or when mixed with other compounds. The accumulated peroxides can then violently explode when exposed to shock, friction, or heat. Pure compounds will accumulate peroxides more readily than compounds containing impurities.

Examples of organic compounds that form hazardous peroxides:

- aldehydes, ketones
- ethers
- compounds with allylene (CH$_2$ = CHCH$_2$R) structure
- alkali metals, alkoxides, amines
- vinyl and vinylidene compounds
- compounds with benzylic hydrogen atoms
Examples of chemicals which form hazardous peroxides during exposure to air:

- ethyl vinyl ether < p-Dioxane
- decalin < ethyl ether
- tetralin < isopropyl ether
- tetrahydrofuran (THF)

Destruction of the listed chemicals is recommended within 1 year of chemical receipt or 1 month after opening without any testing for peroxide content.

- Acetal
- Allyl ether
- Allyl phenyl ether
- Isoamyl benzyl ether
- Benzyl n-butyl ether
- Dibenzyl ether
- Benzyl ethyl ether
- Benzyl 1-naphthyl ether
- p-Dibenzyloxybenzene
- 1,2-Dibenzylxylethane
- Chloroacetaldehydediethylacetal
- 2-Chlorobutadiene
- Cyclohexene
- Cyclooctene
- Decalin
- Diethoxymethane
- Vinylidene chloride

Discard opened containers of peroxidizable compounds not listed above within 12 months or minimum expiration date provided by the manufacturer if less than 12 months. For disposal, call DES at (40)5-3960.

Labeling & Information

A pictorial oxidizer label depicts a flaming letter "O" on a yellow background.

Information on oxidizing agents can be found on the MSDS under the heading Reactivity Data.

Storage & Handling

Order ether in small quantities and use quickly.

Include the date of purchase on containers of peroxidizable compounds. Note the date of opening on the label.

When possible, store peroxidizable compounds (except certain inhibited vinyl monomers) under a nitrogen atmosphere. Keep away from heat, light, and ignition sources.

Store in a cool, dry, well-ventilated area, out of direct sunlight. Protect from extreme temperatures and rapid temperature changes. DO NOT SMOKE near oxidizers.

Store in amber glass or inert containers, preferably unbreakable. Containers should be tightly sealed. DO NOT use corks or rubber stoppers to cap containers.

Before opening glass bottles, look for the presence of solids (crystals) or viscous liquid at the bottom of the bottle. These are good indicators of peroxide formation. Do not open a container that is suspect -- call DES at (40)5-3960 for disposal.

Isolate reactive chemicals from incompatible materials.

< organic materials
< flammable solvents
< corrosives (i.e., nitric, chromic acids)

Avoid friction, grinding and all forms of impact while working with oxidizers.

Avoid mixing oxidizing agents with other chemicals during disposal procedures.

To detect the presence of peroxides, the following procedure can be used. In a 25ml glass-stoppered cylinder (colorless, protected from the light), add 1 ml of freshly prepared 10% aqueous potassium iodide solution to 10 ml of organic solvent. View the cylinder transversely against a white background. If a yellow or brown color appears, peroxide is present. Call DES for disposal.

For more information, contact DES at (40)5-3960.

TOXICITY

The concept of toxicity is unique because it can be applicable to all chemical substances used in the laboratory. The terminology explained below can assist laboratory workers in assessing the degree of hazard and provide guidance in the selection of appropriate personal protective equipment.

Toxicity is defined as the ability of a substance to cause: damage to living tissue, impairment of the central nervous system, severe illness, or in extreme cases, death when ingested, inhaled, or absorbed through the skin.

The administration of a particular dosage of a chemical, and the subsequent response by experimental animals, can help predict that chemical's toxic effect on humans. The dose-response behavior is represented by a dose-response curve, which demonstrates that not all individuals will respond to a particular dose of a chemical in the same manner. Some people will be more sensitive than others, and a specific dosage that may be lethal to one person may not be lethal to another.
The point on the curve where 50% of the test animals have died as a result of a particular chemical dosage is referred to as the Lethal Dose subscripts 50, or LD subscripts 50. The LD subscripts 50 is usually indicated in terms of milligrams of substance ingested per kilogram of body weight (mg/kg). The lower the LD subscripts 50, the more toxic the material.

/ Inhalation of toxic substances can cause a great deal of tissue damage. Each lung is composed of a large surface area of folded tissue, which is vulnerable to assault by toxic vapors and airborne particles. The toxicity of a substance via inhalation is represented by TLVs, (Threshold Limit Values) or PELs (Permissible Exposure Limits). TLVs are compiled by the American Conference of Governmental Industrial Hygienists (ACGIH) based on available research, and are considered the industry standards. PELs are determined by the Occupational Safety and Health Administration (OSHA) and promulgated as enforceable standards.

> Both measures are expressed in parts per million (ppm) of the substance in air, or milligrams of substance per cubic meter of air.

> The exposure limits are identified as time-weighted averages (TWA) and the short-term exposure limits (STEL) or ceilings (C).

6 The TWA of a substance is the average concentration to which an average worker can be exposed throughout an eight-hour work day without adverse effects. An important point to keep in mind is that the adverse effects of over-exposure to a material can range from headache or nausea to more severe disabilities. For this reason, time-weighted averages should be considered only as a guide in controlling health hazards in the laboratory, not as definitive marks between “safe” and “dangerous” concentrations.

6 The STEL of a substance is the maximum amount to which an average worker can be exposed in a fifteen-minute period without adverse effects. Again, this is intended only as a rough guideline.

6 The Ceiling limit of a substance is the concentration that should not be exceeded during any part of the work day.

/ The toxicity of a substance via skin absorption can be determined several ways. Often, the threshold limit values of a substance will have a “skin” notation, indicating they are rapidly absorbed through the skin. Absorption can also be indicated by the solubility of the material in water. Materials that are extremely soluble in water can dissolve in skin moisture and be transported through the skin’s surface. For instance, dimethyl sulfoxide (DMSO) rapidly absorbs into the skin. If any toxic materials are present in this solvent or on the surface of the skin, DMSO will transport these contaminants into the body as well.

/ A substance can have either acute or chronic toxicity. A substance that is acutely toxic will have immediate effects on the health of an over-exposed individual, (e.g., phosgene causes immediate throat irritation at a concentration of 3 ppm and immediate death at 50 ppm). A substance that has chronic toxicity will eventually affect the health of a person due to long-term exposure to that material (e.g., phosgene in concentrations less than 1 ppm over a long period of time are a potential trigger for emphysema).
Poisons

A poisonous compound is a substance that causes death or serious injury if relatively small amounts are inhaled, ingested or have contacted the skin. All substances can be in some quantity or condition of use.

Labeling & Information

Any substance that carries the international poison symbol (skull and crossbones) should be treated as hazardous.

Information on the poisonous nature of chemicals can be found in the MSDS section Health Hazard Data.

Storage & Handling

Treat poisonous compounds with extreme caution. Wear protective lab coats, gloves and safety glasses, and work in a functioning fume hood.

For specific substance information call the Maryland Poison Control Center at 1-800-492-2414.
this page intentionally blank
SPECIAL CLASSES OF MATERIALS

CARCINOGENS

Carcinogens are substances that will cause cancer in humans or animals given appropriate exposures. Suspect carcinogens are substances that have chemical similarities with known carcinogens or have shown preliminary evidence of carcinogenic activity. Carcinogens can represent an insidious hazard in the laboratory since they can cause disease with exposures that do not produce acute toxic effects. There may be a long latency period between exposure and the appearance of cancer.

The consequence of exposure to carcinogens varies according to the species, the physiological and metabolic state of the organism, and the dosage of the carcinogen (including duration and route of exposure, concurrent exposure to other agents, and other factors). There is continuing scientific debate regarding the minimum exposure required to produce cancer, as well as the relevance of experimentally-induced animal cancers to a human situation. The complex interaction of such determinants makes risk assessment of human exposure to carcinogens exceedingly difficult. Due to these uncertainties, assurance of laboratory safety requires strict limitation of human exposure to carcinogenic substances.

Some compounds are carcinogenic only in combination with certain other compounds. It is known that particular chemicals promote the carcinogenic action of others. Since the potential for synergistic action of most chemicals is unknown, it is essential that caution be exercised with all organic compounds and metals when used in combination with carcinogens.

The following terms, defined by the International Agency for Research on Cancer (IARC), are used to describe material carcinogenicity:

- **Sufficient positive**: Those chemicals that were found to promote and increase incidence of malignant tumors in multiple species or strains of lab animals.
- **Limited positive**: Those chemicals found to promote either malignant tumors in a single strain, or benign tumors in single or multiple species or strains.
- **Inadequate**: Insufficient evidence to make a decision.
- **Equivocal**: Almost no supporting evidence.
- **Negative**: Limited or sufficient significant negative evidence.

Examples of known or suspected carcinogens are listed below. The risk factor associated with these compounds is high, and alternative compounds should be used whenever possible.

- 4-Nitrobiphenyl
- a- and β-Naphthylamine
- Methylchloromethyl ether
- Chloroform
- Bis(chloromethyl) ether
- 3,3’-Dichlorobenzidine
- Benzidine
- Ethyleneimine
- Benzene
- Vinyl chloride
- Arsenic
- N-Nitrosodimethylamine
- 1,2-dibromo-3-chloropropane
- Acrylonitrile
- Formaldehyde

* Designates a "Listed Hazardous Waste" (EPA).
The Occupational Safety and Health Administration (OSHA) regulates the carcinogens listed below:

- 2-Acetylaminofluorene
- 4-Dimethylaminoazobenzene
- Acrylonitrile
- Ethylenimine
- 4-Aminodiphenyl
- Inorganic arsenic
- Asbestos
- 4,4'-Methylene bis(2-chloroaniline)
- Benzene
- Methyl chloromethyl ether
- Benizidine
- alpha-Naphthylamine
- Bis-Chloromethyl ether
- beta-Naphthylamine
- Coke oven emissions
- 4-Nitrobiphenyl
- 1,2-dibromo-3-chloropropane
- n-Nitrosodimethylamine
- 3,3'-Dichlorobenzidine
- beta-Propiolactone
- (and its salts)
- Vinyl chloride

Note: Anyone contemplating work with these carcinogens must contact the DES at (40)5-3960 to make arrangements for initial environmental monitoring or engineering control evaluation. Depending on the results, laboratories may be required to meet the OSHA regulations on training, recordkeeping, personal monitoring and medical surveillance.

Access

/ Entrances into areas where known carcinogens are used should be posted appropriately, such as: "Cancer Suspect Agent, Authorized Personnel Only".

Control

/ Laboratory Supervisors/Principal Investigators are required to designate locations within the lab for use of carcinogens. The designation must include consideration of necessary control measures.

/ Allow only authorized persons in the laboratory. Close all doors and restrict traffic in the work area when the carcinogen is being used.

/ Place warning labels such as "Carcinogen" or "Cancer Suspect Agent" on all stock, dilution, and hazardous waste disposal containers.

/ Visitors should be notified about carcinogen use in the laboratory work area.

/ Housekeeping personnel must be informed of any possible hazards or special cleaning procedures that are required.

/ All work with carcinogens should stop and the area and equipment decontaminated before Physical Plant personnel are permitted to repair or work on equipment, drains, or ventilation ducts.

Personnel Protection

/ In some high-risk operations involving carcinogens, a clean room or vestibule may need to be and shower constructed and properly used when entering and exiting a work area.

/ Wear protective clothing, preferably disposable, such as

- gloves
- lab coats
- respirators

when handling carcinogens. Do not wear them outside of the laboratory.
Under normal working conditions, no carcinogen should contact gloves or clothing. They are the last line of defense.

Check the manufacturer's description to be sure that the type of glove or respirator planned to be worn truly forms a barrier against the carcinogen being used. This is particularly true when using organic solvents, acids and bases.

Use mechanical pipettes only.

There should be no eating, drinking, smoking or other unnecessary hand-to-mouth contact.

Only small amounts of carcinogens should be kept in stock. Only minimal amounts should be kept at work stations.

Wash hands with soap after procedures involving a carcinogen.

Storage & Handling

Containers of carcinogens should be clearly labeled and kept in a separate (preferably locked) storage location. Designated work areas appropriate for carcinogen use should be clearly demarcated.

Conduct work practices involving volatiles, aerosols or dust in a chemical fume hood exhausted to the exterior so that the possibility of entry into the supply air intake of any building is minimized.

Check fume hoods, biological safety cabinets (laminar flow hoods) and glove boxes for leaks, air-flow rate and air-flow patterns prior to using them. Follow-up with periodic checks.

All work surfaces on which carcinogens are used should be stainless steel or covered with plastic trays or dry absorbent plastic-backed paper.

Laboratory supervisors are responsible for training laboratory workers on proper carcinogen-handling techniques.

Each laboratory worker must adhere to proper operations, emergency procedures, monitoring of lab work and required medical examinations. Medical records must be accurately maintained when working with carcinogens.

Before working with suspected or known carcinogenic compounds, obtain health hazard information for each compound. In addition, compile spill cleanup emergency procedures for your laboratory.
MUTAGENS and TERATOGENS

Mutagens
Mutagens are chemical and physical agents that induce mutations in DNA and in living cells. This affects the genetic system in such a way as to cause cancer or hereditary changes in chromosomes. Individuals exposed to chemicals with mutagenic properties may develop genetic damage to the extent that future offspring may be affected.

Two forms of somatic (body/organ) cell interference may be noted.

- **Leukemias**: White blood cells are produced far more rapidly than they can be removed from the blood, interfering with normal body functions.
- **Cancers**: Cells that do not normally divide during adult life begin to proliferate to the extent that such division displaces or invades normal tissues.

Examples of mutagens:
- Arsenic
- Ethidium Bromide
- Ionizing Radiation (gamma, x-rays)
- Alkylating agents (i.e., dimethyl sulfate)

Teratogens
Teratogens are chemical and physical agents that interfere with normal embryonic development. Teratogens differ from mutagens in that there must be a developing fetus. Damage to the fetus (embryo) is most likely to occur early in pregnancy, during the first 8 - 10 weeks. Teratogens may produce congenital malformations or death of the fetus without inducing damage to the pregnant woman.

In general, carcinogenic chemicals should be considered as a hazard to reproductive health. Even though OSHA has established exposure limits for dangerous materials, a developing fetus may be adversely affected by lower doses than those considered acceptable for adult exposure. Toxicology is still not well developed to evaluate reproductive health hazards. However, as of 1985, OSHA has identified three substances as teratogens:

- Dibromochloropropane
- Lead
- Ethylene oxide

Examples of several other materials that are thought to be associated with reproductive health disorders are listed below.

- Antimony
- Carbon disulfide
- Ethylene thiourea
- Polychlorinated biphenols (PCBs)
- Nitrous oxide
- Formaldehyde
- Ethylene dibromide
- Ionizing radiation

Handling & Storage
See precautions as listed under carcinogens.

Before working with suspected or known mutagenic or teratogenic compounds, obtain health hazard information for each compound. In addition, compile spill cleanup emergency procedures for your laboratory.

Exercise extreme caution, as you would with carcinogens. Wear personal protective clothing and equipment, and work in a well ventilated area.
BIOHAZARDS & INFECTIOUS WASTE

All laboratories involved in the use of human pathogenic microorganisms and recombinant DNA must be certified at a biosafety level established by the Biological Safety Officer. Contact the BSO at (40)5-3960 for help with the certification process.

Biohazards

- The laboratory supervisor is responsible for the safety of laboratory workers in their area. In handling biohazardous materials, the supervisor should consider:
 - The biosafety level established for the lab by BACH.
 - Current OSHA, EPA, and other pertinent requirements pertaining to biohazard use. This includes CDC-NIH guidelines as described in "Biosafety in Microbiological and Biomedical Laboratories." See Appendix IV for summary of biosafety level recommendations.
 - Education/training provisions to introduce laboratory workers to biohazard use and disposal.
 - Access to these areas should be limited to authorized personnel only.
 - The concept of "universal precautions" must be observed when infectious materials or by-products are present.

- It is the responsibility of the laboratory supervisor to post the international biohazard symbol on all entrances to biohazard work areas along with pertinent emergency information.

- Individuals who have contact with human blood or blood products must comply with the "UMCP Bloodborne Pathogens Exposure Control Plan". Contact DES for more information at (40)5-3960.

Biological, Pathological or Medical Waste

- Transport and disposal of infectious waste must be done in accordance with guidelines as listed in the "UMCP Hazardous and Regulated Waste Management Manual", the UMCP Bloodborne Pathogen Standard and in the "UMCP Waste Disposal Guidelines" wall chart (the information provided is uniform in all 3 of these documents).

- Biological, Pathological or Medical Waste (BPMW) includes but is not limited to the following wastes:
 - Cultures and stock of infectious agents and associated biologicals including culture from medical, pathological, research and teaching laboratories; wastes from the production of biologicals; discarded live and attenuated vaccines; and culture dishes and devices used to transfer, inoculate and mix cultures.
 - Blood and blood products. Wastes consisting of human blood, human blood products (includes serum, plasma, etc.) and items contaminated by free-flowing human blood are BPMW.
Pathological wastes. All pathological wastes and all wastes that are human tissues, organs, body parts, or body fluids that are removed during surgery, autopsy or other teaching or research procedures, and specimens of the above including their containers are BPMW.

Sharps. Used or unused hypodermic needles, syringes, scalpel blades, pasteur pipettes, transfer pipettes, transfer pipette tips, scalpel blades, razor blades, blood vials, needles attached to tubing, needles used with sutures, culture dishes regardless of presence or absence of infectious materials, broken glass and similar devices likely to be contaminated with organisms that are pathogenic to healthy humans and all sharps used in patient care are BPMW.

Animal wastes. All animal carcasses, body parts, potentially contaminated bedding, and related wastes are BPMW. (When animals are intentionally infected with organisms likely to be pathogenic to healthy humans for the purposes of research, in vivo testing, production of biological materials or any other reason; the animal carcasses, body parts, bedding material and all other potentially contaminated wastes must be treated as BPMW for storage and disposal.)

Any residue or contaminated soil, water, or other debris resulting from the cleanup of a spill of any BPMW.

Isolation wastes. Biological wastes and discarded materials contaminated with blood, excretions, exudates, or secretions of humans or animals who are isolated to protect others from highly communicable diseases, or isolated animals infected with highly communicable diseases.

Any waste contaminated by or mixed with BPMW.

All biological materials, including recombinant DNA, should be autoclaved prior to discarding.

Decontamination of Material

Materials known or suspected to be contaminated with an infectious agent must be sterilized by the generator. In general, autoclaving is the most effective and convenient form of sterilization.

Wet Heat (Steam)

Also known as autoclaving, this method requires a chamber temperature of at least 250°F(121°C). The processing time begins when the materials being sterilized reach the predetermined temperature. Monitor steam sterilization effectiveness with a biological indicator approved by the BSO.

Post the “Autoclave Usage For Safety and Quality Control” sign available through DES near each autoclave in use.
Disinfectants

The following table lists a description of commonly used disinfectants:

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohols</td>
<td>Ethyl or isopropyl alcohols at 70-80% concentration are good general purpose disinfecants; not effective against bacterial spores.</td>
</tr>
<tr>
<td>Quaternary Ammonium Compounds</td>
<td>Cationic detergents are strongly surface-active and extremely effective against lipoviruses; not effective against gram negative bacterial organisms and may be neutralized by anionic detergents (soaps).</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Low concentrations (50-500 ppm) are effective against vegetative bacteria and most viruses; higher concentrations (2500 ppm) are required for bacterial spores; corrosive to metal surfaces; must be prepared fresh; laundry bleach (5.25% chlorine) may be used as a disinfectant.</td>
</tr>
<tr>
<td>Iodine</td>
<td>Recommended for general use; effective against vegetative bacteria and viruses; poor activity against bacterial spores. Betadine is a good disinfectant for washing hands.</td>
</tr>
</tbody>
</table>

Ethylene Oxide Gas (EtO) Contact DES at (40)5-3960 prior to using EtO for sterilization activities to assure compliance with OSHA regulation and BSO guidelines.

EtO gas is lethal for all known microorganisms, but is best used to sterilize heat-resistant organisms or heat-sensitive equipment. EtO sterilization is recommended only when an alternate sterilization method is not possible.

For information on proper disposal procedures, see the "UMCP Hazardous and Regulated Waste Management Manual", the "UMCP Waste Disposal Guidelines" wall chart or call DES at (40)5-3960.
RADIOACTIVE MATERIALS AND RADIATION-PRODUCING EQUIPMENT

All researchers wishing to work with radioactive compounds must complete training and submit a fully completed application to the Radiation Safety Office (RSO), (40)5-3988. There are federal and state regulations that are very strictly enforced, so be sure you are doing things correctly. All use of radioactive materials and radiation-producing equipment must be authorized by the Radiation Safety Officer. Individuals must be approved as Authorized users or work under the direct supervision of qualified personnel. Authorized Users are responsible for all safety aspects of radioactive materials handling. Periodic surveys of laboratories are conducted, and personal exposures are monitored for anyone working with radioactive materials.

All requests for radiation measurements should be directed to the staff at (40)5-3988.

All purchasing, receiving and shipment of radioactive materials is done through the RSO of DES in room 2124 of the Chemical and Nuclear Engineering Building.

For information on proper disposal procedures, see the "UMCP Hazardous and Regulated Waste Management Manual", the "UMCP Waste Disposal Guidelines" wall chart, the UMCP Radiation Safety Manual or call DES at (40)5-3960.

For more information concerning radiation safety requirements, call the RSO at (40)5-3988.

COMPRESSED GASES

The purpose of this section is to assist the laboratory worker with identification, storage, maintenance and handling of compressed gases. Compressed gases can be hazardous because each cylinder contains large amounts of energy and may have high flammability and toxicity potential.

Labeling & Information

Compressed gas containers may be labeled in five ways:

- flammable gases are designated by a flame on a red label;
- non-flammable gas labels depict a gas canister on a green background
- poison gas labels depict a skull and crossbones
- oxygen-containing gases are designated by the letter "o"
- chlorine gas is distinctly labeled.

Know the contents of the cylinder and be familiar with the properties of the gas.

The contents of the cylinder or compressed gas should be clearly marked and identified with proper labels or tags on the shoulder of the cylinder. Those cylinders or compressed gases that do not comply with identification requirements should be returned to the manufacturer.

If two labels are associated with one cylinder, affix the labels 180 degrees apart on the shoulder of each cylinder. Label all empty cylinders "EMPTY" or "MT" and date the tag. Treat an empty cylinder in the same manner that you would if it were full.
All regulators, gauges, valves, manifolds, must be designed for the particular pressures and gases involved. They should bear the inspection seal of either Underwriters’ Laboratories (UL®) or Factory Mutual Engineering Division of Associated Factory Mutual Fire Insurance Companies (FM®).

Storage & Handling

All cylinders should be stored in cool, dry, well-ventilated surroundings and away from all flammable substances including oil, greases, and gasoline. DO NOT subject any part of a cylinder to a temperature higher than 125°F.

Cylinders should not be located where objects may strike or fall on them.

Cylinders should not be stored in damp areas, or near salt, corrosive chemicals, fumes, heat or direct sunlight.

Store cylinders by gas type, separating oxidizing gases from flammable gases. Store flammable and oxidizing gases either 20 ft apart or separated by a 30 minute fire wall, five feet high.

Keep a minimum number of cylinders on hand.

All cylinders and compressed gases (full or empty) should be properly fastened and supported by straps, belts, buckles or chains to prevent them from falling and causing bodily harm or becoming a projectile. A maximum of two cylinders per restraint is preferred.

Close valves and relieve pressure on cylinder regulators when cylinders are not in use.

Valve handles must be in place when cylinders are in use.

DO NOT smoke in areas where there are flammable gases.

DO NOT extinguish a flame caused by a gas until the gas source has been shut off.

A cylinder should only be moved while strapped to a wheel cart to ensure stability. When storing or moving cylinders, always attach safety caps.

DO NOT heat the cylinder or place a cylinder where it may become part of an electrical circuit. Compressed gases must be handled as high-energy sources and dangerous projectiles.

All cylinders should be checked for damage prior to use. DO NOT repair damaged cylinders yourself. Damaged or defective cylinders, valves, etc., must be taken out of use immediately and returned to the manufacturer for repair.
Each regulator valve should be inspected annually. Never force valve or regulator connections. Threads and the configuration of valve outlets are different for each family of gases to prevent mixing of incompatible gases.

When opening a cylinder, direct the cylinder opening away from personnel and open slowly.

DO NOT use lubrication on valve regulators.

Do not refill a cylinder with a material other than that originally contained in the cylinder.

Do not alter cylinder labeling.

Do not alter the cylinder pressure by use of an external heat source.

If an inert, flammable or toxic gas cylinder develops a small leak at the valve, carefully remove the cylinder to a hood or open space outdoors away from any possible source of ignition and all populations. Call DES for assistance.

CRYOGENIC MATERIALS

Cryogenic materials have special properties that make them particularly hazardous to use in the solid, liquid or gaseous states. They are characterized by severe low temperature (-60°C to -270°C). Cryogenic temperatures are achieved by liquefaction of gases, most commonly helium, hydrogen, nitrogen, argon, oxygen or methane.

The severely cold temperatures associated with cryogenic liquids (-60°C to -270°C) can damage living tissue on contact and embrittle structural materials.

Liquified under pressure, cryogenic liquids must be kept in specially designed, high-pressure vessels that contain fittings to relieve overpressure. When located in moist areas, ice formation can plug pressure release devices and pose an explosion hazard. For this reason, store vessels in a dry place and periodically check for ice formation.

Cryogenic liquids present fire and explosion hazards. A flammable mixture, cooled in the presence of air with liquid nitrogen or liquid oxygen, can cause oxygen to condense and thereby present an explosion hazard. Keep away from ignition sources. Flammable liquids will support combustion in both the liquid and gaseous states. If allowed to depressurize, cryogenic liquids will rapidly and violently expand.

Store and work with cryogenic liquids in a well-ventilated area to prevent the accumulation of flammable, toxic or inert gases as evaporation and condensation occurs near the cryogenic tank.
Safety glasses and face shields should be used. For handling of cryogenic liquids, use potholders or appropriate thermal gloves. (Check with the glove manufacturer to assure the gloves will protect against the extreme temperatures of cryogenic material used.)

Cushion glassware in a protective covering to prevent injury caused by flying glass in the event of implosion/explosion.

Transport fragile cryogenic containers with caution -- use a hand truck if appropriate.

Vent cryogenic storage containers outdoors or into a chemical fume hood system.

Cryogenic gases ALWAYS pose a high pressure hazard since they are stored near boiling point. Liquid to gas evaporation causes high pressures to build up.

ASBESTOS-CONTAINING MATERIALS

Since the early 1900's, asbestos has been used extensively in the construction materials of buildings. Due to its low cost, fire and chemical resistance, insulation, and strengthening qualities, this "magic" mineral has been added to over 3,500 products found in the construction industry. The prolonged inhalation of asbestos fibers from these products has been linked to several lung diseases, including asbestosis, lung cancer and mesothelioma.

Although the federal government banned the use of certain "friable" types of asbestos-containing materials (ACM) in 1978, many UMCP buildings were constructed and renovated prior to this time. Friable means that the material may be reduced to powder by hand pressure. Non-friable ACM will not be subjected to a total ban until 1997. For these reasons, nearly all UMCP buildings contain asbestos in some form. The key to living safely with ACM is proper management.

DES has developed an asbestos management plan for all University buildings. This plan includes an operations and maintenance program, training in recognition, training for staff members who actually work with ACM, and a recordkeeping system for reporting and recording locations and conditions of these materials. Some types of building materials that commonly contain asbestos include sprayed-on fireproofing; acoustical plaster; pipe, tank and boiler insulation; lab bench tops; fume hood panels; ceiling and floor tile, and sheet floor covering. Provided asbestos materials are not disturbed in a manner which creates airborne dust, they cannot harm your health. If disturbance becomes necessary, such as during renovation projects or computer cable installation, only properly trained and protected personnel should perform these tasks.

Should you encounter damaged suspect ACM in your work place, or if you may need to disturb or remove suspect materials, please contact DES for assistance at (40)5-3960. Contact Personnel Services at (40)5-5651 to sign up for a regularly scheduled asbestos awareness training class.
this page intentionally blank
LABELING, MATERIAL SAFETY DATA SHEETS, AND INFORMATION AND TRAINING

LABELING

LABELS should be the primary, initial source of warning for employees when handling hazardous chemical substances. Federal and State regulations mandate that all labels on original/stock containers of hazardous chemicals include the name of the hazardous chemical, appropriate hazard warnings, and the name and address of the manufacturer or other responsible party.

Substances regulated by a specific OSHA standard must be labeled by the manufacturer according to the requirements of that standard. EXAMPLE:

OSHA 1910.1018(p) -- The Inorganic Arsenic Standard states that containers of inorganic arsenic must have a label which bears the following information:

DANGER
CONTAINS INORGANIC ARSENIC
CANCER HAZARD
HARMFUL IF INHALED OR SWALLOWED
USE ONLY WITH ADEQUATE VENTILATION

Hazard Information

Hazard warnings found on the labels of hazardous chemical containers may be composed of pictures, symbols and words, or any combination thereof which convey the hazard(s) of the chemical.

Picture hazard warnings help to identify the following properties and classes of hazardous compounds.

< explosives < poisons
< oxidizers < compressed gases
< flammables < radiation
< corrosives < biohazards

Symbol hazard warnings provide basic information in determining what precautionary measures to use when handling hazardous chemical substances and/or dealing with a fire.

The National Fire Protection Association (NFPA) uses a symbol system designed as a diamond-shaped label containing four differently colored squares:

BLUE SQUARE 6 HEALTH HAZARD
RED SQUARE 6 FLAMMABILITY
YELLOW SQUARE 6 REACTIVITY
WHITE SQUARE 6 “SPECIAL HAZARDS”

A number (0 - 4) is added to each square indicating the order of hazard severity:

0 = NO SPECIAL HAZARDS
4 = SEVERE HAZARD
Word hazard warnings contain a word or words intended to capture the worker's immediate attention (e.g., flammable, poison, fatal if swallowed). These word labels should be in English, but other languages may be used where needed.

Signal words are warnings used to designate the degree of hazard.

- **DANGER**: Highest degree of hazard (Red)
- **WARNING**: Intermediate degree of hazard (Orange)
- **CAUTION**: Lowest degree of hazard (Yellow)

Label Use

Laboratory supervisors should ensure that all incoming containers of hazardous materials bear a label specifying:

- the name of the hazardous chemical.
- the appropriate hazard warning.
- the name and address of the manufacturer or other responsible party.

Laboratory workers should not remove or deface labels on containers of hazardous chemicals.

When chemicals are transferred from the manufacturer's original container to a secondary container, that new container should be appropriately labeled as to chemical identity and hazard warning.

EXCEPTION: Unless the contents of the secondary vessel are to be used during the workshift by the person who performed the original transfer.

MATERIAL SAFETY DATA SHEETS (MSDSs)

MSDSs are a major product-specific information resource for chemicals purchased for use in UMCP laboratories. OSHA requires chemical manufacturers and importers to produce one MSDS for each hazardous chemical they manufacture or import. These MSDSs should be maintained by the lab and a master set is maintained at DES. DES will assist individual labs in assembling individual MSDSs or a set of MSDS for the chemicals located in lab upon request. Call DES at (40)5-3960 or check the online data base in PROFS or INFORM.

The MSDS must include the following information:

- The identity of substance designated on the container label.
- Single substance: chemical and common names.
- Mixtures tested as a whole: chemical and common names of all ingredients which are health hazards, in concentrations of 1% or greater.
- Mixtures untested as a whole: chemical and common names of all ingredients which are health hazards and which are in concentrations of 1% or greater; carcinogens in concentration of 0.1% or greater; hazard determinations are based upon the characteristic of the individual products instead of the combined mixture.
- Physical and chemical characteristics of the hazardous chemicals.
- Physical hazards (potential for fire, explosion, etc.)
< Known acute and chronic health effects and related health information.
< Primary routes of entry into the body.
< Information on exposure limits.
< Whether a hazardous chemical is considered a carcinogen by OSHA, the
 International Agency for Research on Cancer, or the National Toxicology
 Program.
< Precautions for safe handling.
< Generally acceptable control measures (engineering controls, work
 practices, personal protective equipment).
< Emergency and first aid procedures.
< Date of MSDS preparation, or most recent change.
< Name, address, and phone number of the party responsible for preparing
 and distributing the MSDS.

A MSDS may be used for similar mixtures with essentially the same hazards and
contents.

Copies of MSDSs must be readily accessible during work hours.

INFORMATION AND TRAINING

In accordance with Federal and State regulations, all laboratory personnel have the right to be
informed and trained on the chemical hazards present in their work area. The responsibility for
apprising laboratory workers of the necessary precautions to take when using or handling
hazardous materials rests with the Laboratory Supervisor ((LS) or Principal Investigator (PI) in
charge of the laboratory. Ultimately your safety in the lab depends on you! So take the time to
learn about the hazards, the precautions to be taken, and carry out your role safely. If you have
questions, ask your supervisor, or call DES at (40)5-3960.

Employee mandate Orientation

DES will provide general background training as required. Federal regulations
mandate that all laboratory personnel attend these training sessions, and that records of
attendance be kept.

Chemical safety information and training should be provided at the time of a
laboratory worker's initial arrival to the lab area, and prior to new exposure
situations. This can only be done by the LS or PI in charge of the lab. As always,
DES will be happy to assist if you contact us.

Employee Information

Before working in the laboratory setting, all laboratory workers should know
the following:

All procedures in the work area where hazardous materials are present, including
emergencies procedures.

Location and availability of known reference material on the hazards, safe handling,
storage and disposal of hazardous chemicals found in the laboratory. These
references include the MSDSs.

How to review MSDSs, where they are kept, and how to obtain an MSDS for a
particular chemical.
Signs and symptoms associated with exposures to hazardous chemicals used in the laboratory.

Permissible exposure limits (PEL) for OSHA regulated substances or recommended exposure limits for other hazardous chemicals where there is no specific OSHA standard.

If you have any specific questions about MSDSs, laboratory safety, or chemical hazards, call DES.

Employee Training

All laboratory workers have the right to be trained on any potentially hazardous chemical or product used in the work area. Training should include:

< Methods and observations that may be used to detect the presence or release of a hazardous chemical (i.e., continuous monitoring devices, visual appearances, or odors of hazardous chemicals when being released).

< Physical and/or health hazards associated with hazardous materials in the work area.

< Safety measures laboratory workers may use to protect themselves such as appropriate work practices, emergency procedures, and personal protective equipment.

Record-keeping

At the conclusion of any general information/training session with laboratory workers, DES will keep records of attendance for insertion into employees' personnel files. Faculty members/laboratory supervisors who provide specific training are advised to obtain a signed statement from employees indicating that they have received the appropriate training.

ACCESS TO MSDSs

You may access MSDSs by any of the following methods:

< On PROFS - from the main menu choose LOCAL APPLICATIONS; select ADMIN DISPLAY; select ENVIRONMENTAL SAFETY MATERIAL SAFETY DATA SHEETS; select the menu item desired.

< On INFORM - from the main menu choose CAMPUS INFORMATION; select GENERAL INFORMATION; select ENVIRONMENTAL SAFETY MATERIAL SAFETY DATA SHEETS;

< Call DES at (40)5-3960 to receive phone information, have an MSDS faxed to you or have a MSDS mailed to your campus address. If emergency information is necessary call 911 for 24-hr service.

< Send an E-mail request to SAFETY.UMDACC.UMD.EDU.

< Contact your LS or PI. A department or laboratory set of MSDSs may be available for your use.

< Contact the product manufacturer, importer or distributor and request a copy.
Appendix I

Types of Respirators. The following is a description of different types of respirators. Please contact DES to help you evaluate the respirator that best fits your needs.

Commonly Used Respirators (Air Purifying)

< Disposable Dust masks are worn over the nose and mouth to protect the respiratory system from certain nuisance dusts, mists, etc. They can only provide protection against particular contaminants as specified by the manufacturer (e.g., general dust, fiberglass, etc.). These dust masks cannot be fit tested, and are generally single use. They are not recognized as respiratory protection and may not be worn if a potential for overexposure exists. They are not included in the University's Respiratory Protection Program.

< Half-Face Respirators with interchangeable filter cartridges can protect the respiratory system from hazardous dusts, fumes, mists, etc. They can only provide protection against certain contaminants up to limited concentrations specified by the manufacturer for the particular cartridge type used (e.g., toluene, acetone). These generally operate under negative pressure within the respirator which is created by the wearer's breathing through the filter cartridges. As the protection is only gained if there is a proper seal of the respirator face piece, this type requires fit testing prior to respirator assignment and a fit check prior to each use. This respirator can only be worn if the wearer participates in the UMCP respiratory protection program.

< Full-Face Respirators operate under the same principle and requirements as the half-face type, however, they offer a better facepiece fit and also protect the wearer's eyes from particularly irritating gases or vapors.

< Full-face, helmet or hood type powered air purifying respirators (PAPRs) operate under positive pressure inside the facepiece using a battery operated motor blower assembly to force air through a filter cartridge into the wearer's breathing zone. Use of these respirators is also subject to the manufacturers' guidelines and enrollment in the UMCP respiratory protection program.

Less Commonly Used Types Respirators (Air Supplying)

< Air-Line Respirators supply clean air through a small diameter hose from a compressor or compressed air cylinders. The wearer must be attached to the hose at all times, which limits mobility. Use of these respirators is subject to the manufacturers' guidelines and enrollment in the UMCP respiratory protection program.

< Self-Contained Breathing Apparatus (SCBA) respirators supply clean air from a compressed air tank carried on the back of the wearer. These types of respirators are highly mobile and are used primarily for emergency response or rescue work, since only a limited amount of air can be supplied by a single tank, generally 20-60 minutes. Units must be thoroughly inspected on a monthly basis and written records must be kept of all inspections, operator training, etc. Use of these respirators is subject to the manufacturer's guidelines and enrollment in the UMCP respiratory protection program.
Appendix II

GLOVE CHEMICAL RESISTANCE GUIDE

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Silver Shield (4 Mil)</th>
<th>Viton (9 Mil)</th>
<th>Butyl (17 Mil)</th>
<th>Nitrile (11 Mil)</th>
<th>Neoprene (22 Mil)</th>
<th>PVC (20 Mil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>E >6h ND</td>
<td>D BT PR</td>
<td>P 0m 281.9</td>
<td>E 9.6 0.07</td>
<td>F 4m 161</td>
<td>E 21m 18 ID ID ID ID</td>
</tr>
<tr>
<td>Acetone</td>
<td>E >6h ND P ID ID</td>
<td>E >17h ND</td>
<td>P ID ID E 12m 35 P >1m >></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>E >8h ND ID ID ID</td>
<td>E >8h ND</td>
<td>ND ID ID E 40m 7 ID ID ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylic Acid</td>
<td>ID ID ID G 5.9h 0.23</td>
<td>E >8h ND</td>
<td>F ID ID ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>E ID ID F 1m 176 G 3.1h <0.01</td>
<td>P 3m 176 ID ID ID</td>
<td>E 9.6 ND ID ID ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldehyde</td>
<td>E >6h ND P 0m 281.9 E 9.9h 0.07</td>
<td>P 4 161 ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aniline</td>
<td>E >8h ID G 10m 18.7 F >8h ND P 1.1h 45 E >8h ND G >8h ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>ID ID ID F 9.9h 4</td>
<td>E 9h ND</td>
<td>P ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>E >6h ND G 6h 0.012</td>
<td>P 31m 32.3</td>
<td>P ID ID ID ID ID 16m 253 E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzoyl Chloride</td>
<td>ID ID E >8h ND F 6.2h 16.6</td>
<td>P ID ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>E ID ID E 8h ND P 30m 39.8 P 13m 9.1</td>
<td>ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyl Acetate</td>
<td>E >6h ND P ID ID G 1.9h 7.61 P 29m 54.4</td>
<td>E 12m 250 ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Toluylamine</td>
<td>E >6h ND E >8h ND G 1.7h 8</td>
<td>P ID ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>E ID ID P 54m 9 E >15h ND P ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>G >8h ND E >8h ND P 7m 98</td>
<td>P 1m 51 ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>E >6h ND E >13h ND P ID ID G 3.4h 5 F 31m 252 ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celloso</td>
<td>G >6h ND F ID ID G ID ID P ID ID E 5.9h 3 ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>E ID ID E >8h ND P 30m 308 P ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>P 10m 0.001 E 9.5h 0.46</td>
<td>P ID ID P 4m 352 P 12m 250 ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloronaphthalene</td>
<td>E >8h ND E >16h ND P ID ID P 2.9h >1.3 ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroprene</td>
<td>ID ID ID E >8h ND P 28m 18</td>
<td>ID ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>E >6h ND E >7h ND P 1.1h 20.3</td>
<td>P ID ID E 2.7h 7 ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclohexanol</td>
<td>E >6h ND E >8h ND E >11h ND E >16h ND E >16h ND P ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibutylphthalate</td>
<td>E >6h ND E >8h ND E >16h ND E >16h ND E >16h ND P ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ID 2.4h 6 G 1.5h 31 P ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>E >6h ND E 6.9 0.81</td>
<td>P 2h 53 P 8m 311</td>
<td>P 33m 247 ID ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethylamine</td>
<td>E >8h ND E >8h ND P 35m 852</td>
<td>P 47m 46 F ID ID</td>
<td>ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethylaminoethanol</td>
<td>E ID ID E >8h ND E >8h ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethylamine</td>
<td>ID >8h ND P 23m 26.8</td>
<td>E >20h ND P 29m 77.1</td>
<td>P 28m 62 ID 8m 250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethylenetriamine</td>
<td>ID ID E >8h ND E >8h ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disobutyl Ketone 80%</td>
<td>E >6h ND F 1.2h 90.6 G 3.3h 41.2 P 3h 48.9 ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethylacetamide</td>
<td>ID 1.5h 0.728 P 25m 3 ID >8h ND ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethylformamide</td>
<td>E >8h ND P >8h ND E >8h ND P 6m 65 E >8h ND F 1m >15 ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethylsulfide</td>
<td>G ID ID F 1.5h 5 E >8h ND F ID ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxane</td>
<td>G ID ID F 1.5h 5 E >8h ND F ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibutylamine</td>
<td>E >8h ND F >17h ND F 2.3h 238 P ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epichlorohydrin</td>
<td>ID ID ID P 2h 4 G >8h ND P ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ether</td>
<td>ID >6h ND P 12m 21.5 P 8m 92.2 P 14m 21.8 ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>E >6h ND P ID ID G 7.6h 3.4</td>
<td>P 8m 145 G 3m 178 ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl Ether</td>
<td>E >6h ND P 12m 21.5 P 8m 92.2 P 14m 21.8 E 18m 51 ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylamine 70%</td>
<td>E 47m 7.64 P ID ID E >12h ND F 1.1h 30.1</td>
<td>ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylene dibromide</td>
<td>E ID ID E >8h ND F 3.3h 6 P ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde 37%</td>
<td>E >6h ND E >16h ND E 16h ND E >21h ND E >8h ND G 8h ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furan</td>
<td>ID ID ID P 20m 23 P 1.3h 10 P ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furfural</td>
<td>E >8h ND F 3.6h 14.8 E >16h ND P 28m 265 ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td>E ID ID E >8h ND E >8h ND P ID ID ID ID ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Hexane</td>
<td>E >8h ND ID >11h ND P ID ID E ID ID E 38m 5 ID ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrazine 70%</td>
<td>G ID ID F >8h ND P ID ID G >8h ND G >8h ND E >8h ND E >8h ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrochloric Acid 37%</td>
<td>E >6h ND E ID ID E ID ID P ID ID E >8h ND E >8h ND E >8h ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrofluoric Acid 50%</td>
<td>G ID ID G >8h ND G ID ID F ID ID P ID ID E >8h ND E 1.8h 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gloves Chart cont.

| Chemical (cont.) | Silver Shield (4 Mil) | Viton (9 Mil) | Butyl (17 Mil) | Nitrile (11 Mil) | Neoprene (22 Mil) | PVC (20 Mil) |
Chemical	EID	ID	>8h	ND	EID	>8h	ND	G	>8h	ND	ID							
Isobutyl Alcohol																		
Isobutyraldehyde																		
Methacrylic Acid																		
Methacrylonitrile																		
Methyl Chloroform	>6h	ND	>15h	ND	P	ID	P	41m	76.4	P	27m	197	ID	ID	ID	ID	ID	ID
Methyl Cyanide	>8h	ND	>8h	ND	P	ID												
Methyl Ethyl Ketone	>24h	ND	P	ID	ID	E	>8h	ND	P	ID	G	22m	155	ID	1m	>>		
Methyl Isocyanate																		
Methylamine 40%																		
Methylene Chloride	>8h	ND	F	24m	766	F	6m	239	ID	ID								
Methylene Dichloride	>24h	ND	>8h	ND	E	>24h	ND	F	ID									
Methylene Dianiline	>19h	0.002	G	7.9	P	ID	P	4m	766	ID	ID							
Morpholine																		
Nitric Acid, 3 Molar	>6h	ND	G	>8h	ID	F	ID	P	ID	E	>8h	ND	1.5h	0				
Nitrobenzene	>8h	ND	>8h	ND	P	ID	ID	ID	E	>8h	ND	1.5h	0					
Nitropropane	>8h	ND	P	>8h	261	E	>8h	ND	P	16m	29.5	ID	ID	ID	ID	ID	ID	ID
Oxalic Acid	>8h	ND	E	>16h	ND	E	>23	ND	F	33m	1.7	G	1h	20	ID	ID	ID	ID
PCB, Aroclor 1254 50%	>8h	ND	>13h	ND	P	ID	F	ID										
Pentachlorophenol 1%	>8h	ND	>8h	ND	P	ID	E	>13h	ND	8h	ND	9	0					
n-Pentane	>6h	ND	>17h	ND	P	ID	ID	ID	E	ID	ID	3m	0					
Perchloroethylene	>6h	ND	>15h	ND	P	ID	F	>1.3	5.5	ID	29m	75.5	ID	ID	ID	ID	ID	ID
Phenol 85%, water sat G	>6h	ND	>20h	ND	E	>20h	ND	P	>195	E	>8h	ND	3m	13				
Propyl Acetate	>6h	ND	P	ID	ID	G	2.7	2.86	P	17m	72.5	ID	ID	ID	ID	ID	ID	ID
Propyelenediamine		ID	ID	E	3m	ND	E	>8h	ND	F	ID							
Pyridine		ID	ID	P	ID	74	G	>8h	ND	P	ID	ID	23m	117	ID	1m	>>	
Red Fuming Nitric Acid																		
Sodium Hydroxide 50%	>6h	ND	G	>8h	ND	P	ID	E	G	ID	ID	E	>8h	ND				
Styrine	>4h	ND	G	>8h	ND	P	ID	P	ID	P	ID	40	27m	40				
Sulfuric Acid, 3 Molar	>6h	ND	E	ID	ID	G	ID	ID	P	ID	ID	E	>6.7	ND	8h	ND		
Tetrachloroethylene	>6h	ND	>17h	ND	P	ID	F	1.3	5.5	ID	28m	75.5	ID	ID	ID	ID	ID	ID
Tetraethylene epoxideamine	ID	ND	>8h	ND	E	>8h	ND	F	ID									
Tetrafluoroethylene																		
Tetrahydrofuran	>8h	ND	P	4m	327	F	3m	112	P	4m	167	P	11m	671	ID	1m	>>	
Thiophene	>6h	ND	E	>8h	ND	P	1.8	17	P	ID								
Toluene	>6h	ND	P	>8h	ND	F	21m	22.1	P	11m	68.1	ID	14m	576	ID	3m	350	
Toluene Disocyanate	>8h	ND	>16h	ND	E	>8h	ND	ID										
Trichloroethane	>6h	ND	G	7.4	0.24	P	18m	550	P	8m	283	ID	11m	881	ID	ID	ID	ID
1,1,1 Trichloroethane	>6h	ND	>15h	ND	P	ID	F	41m	76.4	P	27m	197	ID	6m				
1,1,2 Trichloroethane																		
Triethylamine																		
Vinyl Chloride	>8h	ND	G	4.4	0.098	P	ID	G	5.7	0.14	P	ID						
Xylene	>24h	ND	>8h	ND	P	ID	ID	ID	23m	135	ID	4m	363					

1The data for Silver Shield®, Viton®, Butyl and Nitrile gloves were provided by Siebe North Inc, Charleston, SC; information on Neoprene and Polyvinyl Chloride (PVC) gloves were supplied by Pioneer Industrial Products, Willard, OH.

2In Kerosene

E=Excellent; G=Good; P=Fair; F=Poor; ND=None detected; ID=Insufficient Data; D=Degradation; BT=Breakthrough, amount of elapsed time after initial exposure before the chemical can be analytically detected on the inside surface of the glove; PR=Permeation Rate is expressed in mg/m²/sec. PR can be used for estimating glove thickness required; for a given material, thicker is more resistant.

Note: Silver Shield gloves may be worn as liners under other glove types to enhance protection.

Table used by permission of Van Nostrand Reinhold publishing.
RADIATION EMERGENCY PROCEDURES

Radiation Safety Office (RSO) Emergency Numbers
- Anytime: 911
- Daytime: 405-3988

Appendix III

RADIATION EMERGENCY PROCEDURES

<table>
<thead>
<tr>
<th>TYPE OF EMERGENCY</th>
<th>HAZARD</th>
<th>IMMEDIATE PRECAUTIONS</th>
<th>FOLLOW UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Spills to</td>
<td>RADIATION: No immediate</td>
<td>1. Notify all persons in room</td>
<td>Permit no one work in area until approval of RSO</td>
</tr>
<tr>
<td></td>
<td>radiation hazard to personnel</td>
<td>2. Confine spill immediately</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Notify RSO</td>
<td></td>
</tr>
<tr>
<td>Major Spills to</td>
<td>RADIATION: May be great</td>
<td>1. Notify personnel to vacate room</td>
<td>Decontamination of equipment (including spill itself) as</td>
</tr>
<tr>
<td>personnel and</td>
<td></td>
<td>2. Make no attempt to clean up spill</td>
<td>prescribed by the RSO</td>
</tr>
<tr>
<td>its own</td>
<td></td>
<td>3. Switch off fans and vacate room</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Provide temporary barricade</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Notify the RSO</td>
<td></td>
</tr>
<tr>
<td>Accident Involving:</td>
<td>RADIATION: Internal hazard due to possible ingestion</td>
<td>1. Notify others to vacate room</td>
<td>Do not re-enter</td>
</tr>
<tr>
<td>until RSO</td>
<td>and inhalation</td>
<td>2. Close windows and shut off air</td>
<td>gives approval</td>
</tr>
<tr>
<td>Dust Mist</td>
<td></td>
<td>3. Provide temporary barricade</td>
<td></td>
</tr>
<tr>
<td>Fumes Vapors</td>
<td>CONTAMINATION: Easily spread when airborne</td>
<td>4. Notify RSO</td>
<td></td>
</tr>
<tr>
<td>Gases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injuries Involving:</td>
<td>CONTAMINATION: Wounds usually greatest</td>
<td>1. Wash wound immediately under running water</td>
<td>Permit no one involved in accident to return to work and Physician</td>
</tr>
<tr>
<td>Radiation Hazards</td>
<td>hazard</td>
<td>2. Call Physician - Student Health Center</td>
<td></td>
</tr>
<tr>
<td>Contaminations</td>
<td></td>
<td>3. Notify RSO</td>
<td></td>
</tr>
<tr>
<td>Fires Involving</td>
<td>RADIATION: Internal hazard from airborne activity</td>
<td>1. Pull fire alarm to notify all persons in room</td>
<td>Govern emergency</td>
</tr>
<tr>
<td>activities</td>
<td></td>
<td>room and building to evacuate at once</td>
<td>by the restrictions of the RSO</td>
</tr>
<tr>
<td>Radioactivity</td>
<td></td>
<td>2. Call the Fire Department (FD) 911</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>from a safe location</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Notify RSO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Meet the FD outside</td>
<td></td>
</tr>
<tr>
<td>X- RAY Injuries</td>
<td>RADIATION: Superficial and/or deep tissue burns</td>
<td>1. Shut off machine (DO NOT alter machine configuration until RSO approval of RSO and Physician</td>
<td>Permit no one involved in accident to return to work without inspection)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Call Physician - Student Health Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Notify RSO</td>
<td></td>
</tr>
</tbody>
</table>
Appendix IV

Summary of Biosafety Levels Recommended for Infectious Agents

<table>
<thead>
<tr>
<th>Biosafety Level</th>
<th>Practice Technique</th>
<th>Safety Equipment</th>
<th>Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard Microbiological Practices</td>
<td>None: Primary containment provided by adherence to standard laboratory practices during open bench work.</td>
<td>Basic</td>
</tr>
<tr>
<td>2</td>
<td>Level 1 practices PLUS: laboratory coats; decontamination of all infectious wastes; limited access; protective gloves and biohazard warning signs as indicated.</td>
<td>Partial containment equipment (e.g., Class I or II Biosafety Cabinets) used to conduct mechanical and manipulative procedures that have high aerosol potential that may increase the risk of exposure to personnel.</td>
<td>Basic</td>
</tr>
<tr>
<td>3</td>
<td>Level 2 practices PLUS: special laboratory clothing; controlled access.</td>
<td>Partial containment equipment used for all manipulations of infectious materials.</td>
<td>Containment</td>
</tr>
<tr>
<td>4</td>
<td>Level 3 practices PLUS: entrance through a change room where street clothing is removed and laboratory clothing is put on; shower on exit; all wastes are decontaminated on exit from the facility.</td>
<td>Maximum containment equipment (e.g., Class III Biosafety Cabinet or partial containment equipment in combination with full-body, air-supplied, positive-pressure personnel suit) used for all procedures and activities.</td>
<td>Maximum Containment</td>
</tr>
</tbody>
</table>

A full description of each biosafety level recommendation is available through the U.S. Department of Health and Human Services, Centers for Disease Control and the National Institutes of Health publication "Biosafety in Microbiological and Biomedical Laboratories" or through DES and the UMCP Biological Safety Officer.
Appendix V

TABLE OF INCOMPATIBLE CHEMICALS

The following substances may react violently with one another and must be kept apart.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Is Incompatible with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid</td>
<td>Chromic acid, nitric acid alcohols, ethylene glycol, perchloric acid, peroxides,</td>
</tr>
<tr>
<td></td>
<td>permanganates</td>
</tr>
<tr>
<td>Acetone</td>
<td>Concentrated nitric and sulfuric acid mixtures</td>
</tr>
<tr>
<td>Acetylene</td>
<td>Chlorine, bromine, fluorine, copper, silver, mercury</td>
</tr>
<tr>
<td>Acids</td>
<td>Bases</td>
</tr>
<tr>
<td>Activated Carbon</td>
<td>Calcium hypochlorite, oxidizing agents</td>
</tr>
<tr>
<td>Alkali Metals</td>
<td>Water, carbon tetrachloride and other halogenated alkanes, carbon dioxide, halogens</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Water</td>
</tr>
<tr>
<td>Alkyls</td>
<td>Mercury (e.g., in pressure gauges), laboratory gas chlorine, calcium hypochlorite,</td>
</tr>
<tr>
<td></td>
<td>iodine, bromine, hydrogen fluoride</td>
</tr>
<tr>
<td>Ammonium organic Nitrate</td>
<td>Acids, powered metals, flammable liquids, chlorates, nitrates, sulfur, fine-particulate</td>
</tr>
<tr>
<td></td>
<td>or combustible materials.</td>
</tr>
<tr>
<td>Aniline</td>
<td>Nitric acid, hydrogen peroxide</td>
</tr>
<tr>
<td>Azides</td>
<td>Acids</td>
</tr>
<tr>
<td>Bases</td>
<td>Acids</td>
</tr>
<tr>
<td>Bromine</td>
<td>See chlorine</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>Sodium</td>
</tr>
<tr>
<td>Chlorates</td>
<td>Ammonium salts, acids, powered metals, sulfur, fine-particulate organic or combustible</td>
</tr>
<tr>
<td></td>
<td>substances</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Ammonia, acetylene, butadiene, butane, methane, propane, hydrogen, petroleum benzine,</td>
</tr>
<tr>
<td></td>
<td>benzene, powered metals</td>
</tr>
<tr>
<td>Chemical</td>
<td>Is Incompatible with</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Chromic Acid</td>
<td>Acetic acid, naphthalene, camphor, glycerol, petroleum benzine, alcohols, flammable</td>
</tr>
<tr>
<td>Copper</td>
<td>Acetylene, hydrogen peroxide</td>
</tr>
<tr>
<td>Cumene Hydroperoxide</td>
<td>Acids, both organic and inorganic</td>
</tr>
<tr>
<td>Cyanides</td>
<td>Acids</td>
</tr>
<tr>
<td>INCOMPATIBLE SUBSTANCE (Continued)</td>
<td></td>
</tr>
<tr>
<td>___________________</td>
<td>---</td>
</tr>
<tr>
<td>Chemical</td>
<td>Is Incompatible with</td>
</tr>
<tr>
<td>Flammable Liquids</td>
<td>Ammonium nitrate, chromic acid, hydrogen peroxide, nitric acid, sodium peroxide,</td>
</tr>
<tr>
<td></td>
<td>halogens</td>
</tr>
<tr>
<td>Fluorine</td>
<td>Store separately</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>Fluorine, chlorine, bromine, chromic acid, sodium peroxide</td>
</tr>
<tr>
<td>(butane, propane,</td>
<td></td>
</tr>
<tr>
<td>benzene, etc.)</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Fluoride</td>
<td>Ammonia, laboratory gas or solution</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>Copper, Chromium, iron, metals and metals salts, alcohols, acetone, organic</td>
</tr>
<tr>
<td></td>
<td>substances, aniline, nitromethane, combustibles (solid or liquid)</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>Fuming nitric acid, oxidizing gases</td>
</tr>
<tr>
<td>Iodine</td>
<td>Acetylene, ammonia (laboratory gas or solution)</td>
</tr>
<tr>
<td>Mercury</td>
<td>Acetylene, ammonia</td>
</tr>
<tr>
<td>Nitric Acid, Conc.</td>
<td>Acetic acid, aniline, chromic acid, prussic acid, hydrogen sulfide, flammable</td>
</tr>
<tr>
<td></td>
<td>liquids and gases</td>
</tr>
<tr>
<td>Oxalic Acid</td>
<td>Silver, mercury</td>
</tr>
<tr>
<td>Perchloric Acid</td>
<td>Acetic anhydride, bismuth and its alloys, alcohols, paper, wood</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Sulfur, oxygen-containing compounds with such as chlorates</td>
</tr>
<tr>
<td>Potassium</td>
<td>See alkali metals</td>
</tr>
<tr>
<td>Potassium Chlorate</td>
<td>See chlorates</td>
</tr>
<tr>
<td>Potassium Perchlorate</td>
<td>See chlorates</td>
</tr>
<tr>
<td>Potassium Permanganate</td>
<td>Glycerol, ethylene glycol, benzaldehyde, sulfuric acid</td>
</tr>
<tr>
<td>Silver</td>
<td>Acetylene, oxalic acid, tartaric acid, ammonium compounds.</td>
</tr>
</tbody>
</table>
Sodium
 See alkali metals

Sodium Peroxide
 Methanol, ethanol, glacial acetic acid, anhydride, benzaldehyde, carbon disulfide, glycerol, ethylene glycol, ethyl acetate, methyl acetate, furfural

Sulfides
 Acids

Sulfuric Acid
 Potassium chlorate, potassium perchlorate, potassium permanganate

Please note: This is not an exhaustive list of incompatible chemicals. See the specific lab standard operating procedures or your Lab Supervisor/Principal Investigator to determine additional material incompatibilities of which to be aware.
Appendix VI

X-7.00(A) (A) UMCP POLICY CONCERNING FIRE EMERGENCIES
APPROVED BY THE PRESIDENT MARCH 6, 1993

A. Purpose. This is a statement of official University policy for the reporting of fire emergencies and for the evacuation of campus buildings during fire emergencies, in compliance with local, state, and federal regulations.

B. Policy. A fire emergency exists whenever:

1. A building fire evacuation alarm is sounding;
2. An uncontrolled fire or imminent fire hazard occurs in any building or area of the campus;
3. There is the presence of smoke, or the odor of burning;
4. There is spontaneous or abnormal heating of any material, an uncontrolled release of combustible or toxic gas or other material, or a flammable liquid spill.

C. Procedures.

Campus buildings shall be immediately and totally evacuated whenever the building evacuation alarm is sounding.

1. Upon discovery of evidence that a fire emergency exists, an individual shall accomplish, or cause to be accomplished, the following actions:

 (a) SOUND AN ALARM. Activate the building fire alarm in buildings equipped with a manual fire alarm system. Shout a warning and knock on doors as you evacuate in buildings not equipped with a fire alarm.

 (b) SHUT OFF ALL MACHINERY AND EQUIPMENT IN YOUR AREA.

 (c) LEAVE THE BUILDING AT ONCE.

 (d) CALL THE FIRE DEPARTMENT FROM A SAFE PLACE.

 (1) On-Campus phones DIAL 911

 (2) Off-Campus phones and campus pay phones DIAL 911

 (3) Use Campus emergency phones;

 Indoors - Yellow wall phones with red "EMERGENCY" markings (some corridors).

 Outdoors - Yellow phone boxes with red "EMERGENCY" markings, under blue lights.

 (4) When the emergency operator answers, ask for the fire department, give as much
specific information as possible. State that you are calling from UMCP and include the proper name of the building and room number, floor, or other specific area. Do not hang up until released by the dispatcher. A PHONE CALL MUST BE MADE! ALL BUILDING FIRE ALARMS DO NOT NOTIFY THE FIRE DEPARTMENT.

(e) MEET THE FIRE DEPARTMENT OUTSIDE AND DIRECT THEM TO THE EMERGENCY.

(f) ALL FIRES, EVEN IF EXTINGUISHED OR FOUND EXTINGUISHED, MUST BE REPORTED.

(g) ALL FIRE ALARMS, EVEN IF SUSPECTED TO BE FALSE OR ACCIDENTAL, MUST BE REPORTED TO THE FIRE DEPARTMENT.

2. The evacuation procedures shall be as follows:

(a) It shall be the responsibility of every person to immediately leave a University building whenever the fire alarm is activated or a fire emergency exists.

All students, faculty, and staff are required to leave the building and remain outside until the emergency is over. No one shall restrict or impede the evacuation.

(b) Department heads are expected to review annually fire prevention and fire survival information with faculty and staff, or to schedule a presentation with DES. Such information is available from the DES for use and distribution.

3. Whenever it is brought to the attention of the staff of residential buildings, or departmental personnel, that the fire alarm or sprinkler system is inoperable or has been placed out of service, a firewatch shall be established.

(a) Responsible personnel (residential staff, safety committee, etc.) shall be assigned to the firewatch.

(b) The entire building shall be toured at least one time during each hour of the firewatch.

(c) The emergency dispatcher (911) shall be notified each hour that the watch has been performed.

(d) The firewatch shall be maintained at all times that the building is occupied until the fire protection system is repaired.

4. INTERRUPTION OF FIRE ALARM:

(a) No person may shut off any fire protection or alarm system during a fire emergency incident without the permission of the fire department officer in charge.

(b) No person may shut off any fire protection or alarm system during a bomb threat emergency without the permission of the police officer in charge.

(c) It shall be the responsibility of the University Physical Plant Department to reset or repair any fire protection or alarm system after an emergency incident when notified by the fire or police department in charge. The Physical Plant shall inspect each such system
immediately after every emergency incident and place the system in serviceable condition.

(d) The fire and police departments may reset an alarm system only if there is no damage to the system and when it is within their technical capabilities to do so.

(e) Any person desiring to interrupt service to any fire protection or alarm system must obtain permission from the Department of Physical Plant, Work Control Center (40)5-2222, which shall notify the fire and police departments of every such interruption.

(f) Fire or police department must request the Physical Plant to repair or rest a fire protection system, via the Work Control Center, (40)5-2222.

5. INFORMATION RELEASE TO MEDIA AND THE PUBLIC:

All information regarding University fires will be released through the DES in cooperation with the Public Information Office. No other University agency or employee may release official statements regarding the cause, origin, or nature of campus fires.

D. Information.

Assistance will be provided by the DES to any Department requiring help and advice in its implementation of this UMCP policy.
<table>
<thead>
<tr>
<th>Absolute</th>
<th>A chemical substance that is relatively free of impurities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorb</td>
<td>The penetration of a solid substance by a liquid as by capillary, osmotic, solvent or chemical action. Chemicals are readily absorbed into the human blood stream through the eyes or cuts in the skin.</td>
</tr>
<tr>
<td>Acid</td>
<td>An organic or inorganic compound with a pH of less than 7. Acidic materials are corrosive to human tissue.</td>
</tr>
<tr>
<td>Action Level</td>
<td>A concentration designated in 29 CFR part 1910 for a specific substance, calculated as an eight (8)-hour time-weighted average, which initiates certain required activities such as exposure monitoring and medical surveillance.</td>
</tr>
<tr>
<td>Acute Toxicity</td>
<td>Refers to adverse effects suffered as the result of a short, one-time exposure to toxic materials. It occurs within a relatively short period. Exposure is measured in seconds, minutes, or hours relative to inhalation or skin absorption.</td>
</tr>
<tr>
<td>Adsorb</td>
<td>Collection of gas or liquid molecules on the surface of another material. For sampling of most organic vapors, activated charcoal is a good adsorber.</td>
</tr>
<tr>
<td>Base</td>
<td>Chemical compounds that have a pH of greater then 7. Bases are also referred to as alkalis or caustic materials and can be corrosive to human tissue.</td>
</tr>
<tr>
<td>Boiling Point</td>
<td>The temperature at which the vapor pressure of a liquid is equivalent to the surrounding atmospheric pressure, and the liquid rapidly becomes a vapor. Flammable substances possessing low boiling points are considered fire hazards.</td>
</tr>
<tr>
<td>Carcinogen</td>
<td>A chemical is considered to be a carcinogen if:</td>
</tr>
<tr>
<td>(a)</td>
<td>It has been evaluated by the International Agency for Research on Cancer [IARC] and found to be a carcinogen or potential carcinogen;</td>
</tr>
<tr>
<td>(b)</td>
<td>It is listed as a carcinogen or potential carcinogen in the Annual Report on Carcinogens published by the National Toxicology Program (NTP) (latest edition); or</td>
</tr>
<tr>
<td>(c)</td>
<td>It is regulated by OSHA as a carcinogen.</td>
</tr>
<tr>
<td>Caustic</td>
<td>Any strongly alkaline material that produces either corrosion or irritation to living tissue.</td>
</tr>
<tr>
<td>Chemical Hygiene Plan</td>
<td>A written program developed and implemented by the employer which sets forth procedures, equipment, personal protective equipment, and work practices that are capable of protecting employees from the health hazards presented by hazardous chemicals used in that particular workplace.</td>
</tr>
<tr>
<td>Chemical Reactivity</td>
<td>The ability of a material to chemically change, possibly resulting in explosion hazards or the liberation of toxic fumes.</td>
</tr>
<tr>
<td>Chronic</td>
<td>Adverse health effects resulting from repeated or long-term exposure to toxic</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Toxicity</td>
<td>materials.</td>
</tr>
<tr>
<td>Combustible Liquid</td>
<td>Any liquid having a flashpoint at or above 100°F (37.8°C) but below 200°F (93.3°C), except any mixture having components with flashpoints of 200°F (93.3°C) or higher, the total volume of which make up 99 percent or more of the total volume of the mixture by OSHA and NFPA definition.</td>
</tr>
</tbody>
</table>
| Compressed Gas | (a) A gas, or mixture of gases having in a container, an absolute pressure exceeding 40 psi at 70°F (21.1°C); or
(b) A gas, or mixture of gases having in a container, an absolute pressure exceeding 104 psi at 130°F (54.4°C) regardless of the pressure at 70°F (21.1°C); or
(c) A liquid having a vapor pressure exceeding 40 psi at 100°F (37.8°C) as determined by ASTM D-323-72. |
| Corrosive | A chemical that causes visible destruction of, or irreversible alterations in, living tissue by chemical action at the site of contact. |
| Cryogenic Liquid | Severely cold (-60°C to -270°C) and pressurized liquids. They present an explosion hazard due to high pressures and can cause thermal damage to living tissue. |
| Designated Area | An area that must be assigned by the Principle Investigator or Lab Supervisor for the use of "select carcinogens" reproductive toxins, or substances which have a high degree of acute toxicity. A designated area may be the entire laboratory, an area of a laboratory or a device such as a laboratory hood. |
| Embryotoxin | A substance shown to adversely affect a developing embryo at a particular concentration, but does not affect the pregnant female. |
| EPA | The Environmental Protection Agency federally regulates and enforces environmental protection. |
| Explosive | A chemical that causes a sudden, almost instantaneous release of pressure, gas, and heat when subjected to sudden shock, pressure, or high temperature. |
| Flammable Gas | A gas that forms a flammable mixture with air at a concentration of 13 percent by volume or less, or forms a range of flammable mixtures with air that are wider than 12% by volume, regardless of lower flammable limit. |
| Flammable Liquid | Any liquid having a flashpoint below 100°F (37.8°C) except any mixture having components with flashpoints of 100°F (37.8°C) or higher, the total of which make up 99 percent or more of the total volume of the mixture. |
| Flammable Solid | A solid that is liable to cause a fire through friction, absorption of moisture, spontaneous chemical change, or retained heat from manufacturing or processing, or which can be ignited readily and when ignited burns so vigorously and persistently as to create a serious hazard. |
| Flammability | The ease with which a liquid, solid, or gas will ignite, either spontaneously (pyrophoric) or as the result of a spark or an open flame. The more flammable a material, the more readily ignition occurs. |
| Flashpoint | The minimum temperature at which a liquid gives off a vapor in sufficient concentration
to ignite.

Fume Hood A device located in a laboratory, enclosure on five sides with a movable sash or fixed partial enclosed on the remaining side; constructed and maintained to draw air from the laboratory and to prevent or minimize the escape of air contaminants into the laboratory; and allows chemical manipulations to be conducted in the enclosure without insertion of any part of the employee's body other than hands and arms.

Hazardous Chemical A chemical for which there is statistically significant evidence based on at least one study conducted in accordance with established scientific principles that acute or chronic health effects may occur in exposed employees. The term "health hazard" includes chemicals which are carcinogens, toxic or highly toxic agents, reproductive toxins, irritants, corrosives, sensitizers, hepatotoxins, nephrotoxins, neurotoxins, agents which act on the hematopoietic systems, and agents which damage the lungs, skin, eyes, or mucous membranes.

Highly Toxic A chemical falling within any of the following categories:

(a) A chemical that has a median lethal dose (LD50) of 50 milligrams or less per kilogram of body weight when administered orally to albino rats weighing between 200 and 300 grams each.

(b) A chemical that has a median lethal dose (LD50) of 200 milligrams or less per kilogram of body weight when administered by continuous contact for 24 hours (or less if death occurs within 24 hours) with the bare skin of albino rabbits weighing between two and three kilograms each.

(c) A chemical that has a median lethal concentration (LC50) in air of 200 parts per million by volume or less of gas or vapor, or 2 milligrams per liter or less of mist, fume, or dust, when administered by continuous inhalation for one hour (or less if death occurs within one hour) to albino rats weighing between 200 and 300 grams each.

Hood A device/location in a laboratory, enclosed on five sides, to draw air from the laboratory and to prevent or minimize the escape of the air contaminants into the laboratory. Chemical manipulations may be conducted in the enclosure without inserting any portion of the employees body other than hands and arms.

Infectious Waste Waste that is capable of producing disease. For waste to be considered infectious, it must contain oncogenic viruses or other pathogenic microorganisms with sufficient virulence and quantity that exposure to the waste could result in an infectious disease.

Irritant Chemical substances that cause tissue inflammation or soreness upon absorption, inhalation, or ingestion.

LD₅₀ The quantity of material that when ingested, injected, or applied to the skin as a single dose, will cause death of 50% of the test animals. The test conditions should be specified, the value is expressed in g/kg or mg/kg of body weight.

LEL Lower Explosive Limit - same definition as LFL.

LFL Lower Flammable Limit - The lower limit of flammability of a gas or vapor at ordinary ambient temperatures expressed in percent of the gas or vapor air by volume. This limit
is assumed constant for temperatures up to 250°F(120°C) and is normally listed on a product's material safety data sheet.

LS Laboratory Supervisor

MOSH Maryland Occupational Safety and Health Administration - the state agency charged with worker health and safety. MOSH promulgates Maryland occupational safety and health standards.

MSDS Material Safety Data Sheets are produced by chemical manufacturers and importers. They relay chemical, physical, and hazard information about specific chemicals.

Mutagen Chemical compounds that induce mutations in DNA and living cells.

Neutralize To alter acidic or basic compounds to a pH of 7, making it chemically neutral.

Organic Materials Any chemical compound containing carbon.

OSHA Occupational Safety and Health Administration - the branch of federal government charged with worker health and safety. Maryland has a state operated program that is at least as effective as the federal program maintaining jurisdiction over UMCP known by the acronym MOSH.

Oxidizer A chemical that initiates or promotes combustion in materials, thereby causing fire either of itself or by the release of oxygen or other gases.

Oxidizing Agent Oxygen-containing material which can decompose, generating oxygen.

PEL Permissible Exposure Limits for the workplace, set by regulation and enforced by OSHA. Most of these limit values were originally set, by consensus, by the ACGIH to assist industrial hygienists in implementing exposure control programs. As law, these are listed in 29 CFR 1910.1000 and subject to revision through the regulatory process.

PI Principal Investigator

Poison Any substance which is harmful to living tissue when applied in small doses. Determining factors include concentration, exposure time, particle size, the substance's affinity for tissue, and sensitivity of the exposed tissue to that compound.

Pyrophoric Material Any solid or liquid that has the property of spontaneous ignition in air.

Radioactivity Nuclear transformation, either by natural or artificial means, resulting in emission of energy in the form of alpha, beta, or gamma rays. Amounts of radioactive material are described by the rate of radioactive decay, the Curie (Ci), or in metric multiples and fractions thereof.

Reactivity The proclivity of a compound to chemically react with other substances or itself, resulting in the liberation of energy. Can cause the formation of toxic or corrosive materials, pressure buildup, and temperature fluctuations.
Reproductive Chemicals which affect the reproductive capabilities including chromosomal damage (mutations) and effects on fetuses (teratogenesis).

Toxins A chemical that causes a substantial proportion of exposed people or animals to develop an allergic reaction in normal tissue after repeated exposure to the chemical.

Sensitizer Short Term Exposure Limit, a 15-minute time-weighted average exposure which should not be exceeded at any time during a work day, even if the eight-hour time-weighted average is within the TLV.

STEL Chemical and physical agents which interfere with normal embryonic development. Teratogens may produce congenital malformations or death of the fetus without inducing damage to the pregnant female.

Teratogen Chemical and physical agents which interfere with normal embryonic development. Teratogens may produce congenital malformations or death of the fetus without inducing damage to the pregnant female.

Teratogen Threshold Limit Value indicates the concentration of a chemical substance in the atmosphere that is considered non-hazardous in a person's normal working life.

TLV Time Weighted Average is the concentration for a normal 8-hour working day (40 hours/week) to which workers may be exposed without anticipated adverse effect.

TWA A chemical falling within any of the following categories:

(a) A chemical that has a median lethal dose (LD50) of more than 50 milligrams per kilogram but not more than 500 milligrams per kilogram of body weight when administered orally to albino rats weighing between 200 and 300 grams each.

(b) A chemical that has a median lethal dose (LD50) of more than 200 milligrams per kilogram but not more than 1000 milligrams per kilogram of body weight when administered by continuous contact for 24 hours (or less if death occurs within 24 hours) with the bare skin of albino rabbits weighing between two and three kilograms each.

(c) A chemical that has a median lethal concentration (LC50) in air of more than 200 parts per million but not more than 2,000 parts per million by volume of gas or vapor, or more than two milligrams per liter but not more than 20 milligrams per liter of mist, fume, or dust, when administered by continuous inhalation for one hour (or less if death occurs within one hour) to albino rats weighing between 200 and 300 grams each.

Ultraviolet Light Radiation in the electromagnetic spectrum with wavelengths of 100 - 3900 Ångstroms.

Volatility The tendency of a liquid or solid to pass into the vapor state at a particular temperature.

Water Reactive A chemical that reacts with water to release a gas that is either flammable or presents a health hazard.

Appendix VIII

REFERENCES

Singer, James; Pesticide Safety: Guidelines for Personnel Protection; Davis, October, 1982.

Appendix VII

GLOSSARY

Acid An organic or inorganic compound. Has a pH of less than 7. Acidic materials are corrosive to human tissue.

Action level A concentration designated in 29 CFR part 1910 for a specific substance, calculated as an eight (8)-hour time-weighted average, which initiates certain required activities such as exposed monitoring and medical surveillance.

Acute toxicity Refers to adverse effects suffered as the result of a short, one-time exposure to toxic materials. It occurs within a relatively short period. Exposure is measured in seconds, minutes, or hours relative to inhalation or skin absorption.

Base Chemical compounds that have a pH of greater than 7. Bases are also referred to as alkalis or caustic materials and can be corrosive to human tissue.

Boiling point The temperature at which the vapor pressure of a liquid is equivalent to the surrounding atmospheric pressure, and the liquid rapidly becomes a vapor. Flammable substances possessing low boiling points are considered fire hazards.

Carcinogen A chemical is considered to be a carcinogen if:

(a) it has been evaluated by the International Agency for Research on Cancer [IARC] and found to be a carcinogen or potential carcinogen;

(b) It is listed as a carcinogen or potential carcinogen in the Annual Report on Carcinogens published by the National Toxicology Program (NTP) (latest edition); or

(c) It is regulated by OSHA as a carcinogen.

Caustic Any strongly alkaline material that produces either corrosion or irritation to living tissue.

Chemical Hygiene Plan A written program developed and implemented by the employer which sets forth procedures, equipment, personal protective equipment, and work practices that are capable of protecting employees from the health hazards presented by hazardous chemicals used in that particular workplace.

Chemical Reactivity The ability of a material to chemically change, possibly resulting in explosion hazards or the liberation of toxic fumes.

Chronic Toxicity Adverse health effects resulting from repeated or long-term exposure to toxic materials.
Combustible Liquid
Any liquid having a flashpoint at or above 100°F (37.8°C) but below 200°F (93.3°C), liquid except any mixture having components with flashpoints of 200°F (93.3°C), or higher, the total volume of which make up 99 percent or more of the total volume of the mixture.

Compressed Gas
(a) A gas or mixture of gases having in a container, an absolute pressure gas exceeding gas 40 psi at 70°F (21.1°C); or
(b) A gas or mixture of gases having in a container, an absolute pressure exceeding 104 psi at 130°F (54.4°C) regardless of the pressure at 70°F (21.1°C); or
(c) A liquid having a vapor pressure exceeding 40 psi at 100°F(37.8°C) as determined by ASTM D-323-72.

Corrosive
A chemical that causes visible destruction of, or irreversible alterations in, living tissue by chemical action at the site of contact.

Cryogenic liquid
Severely cold (-60°C to -270°C) and pressurized liquids. They present explosion hazards and can cause damage to living tissue.

Designated area
An area that may be used for work with "select carcinogens," reproductive toxins, area or substances which have a high degree of acute toxicity. A designated area may be the entire laboratory, an area of a laboratory or a device such as a laboratory hood.

Embryotoxin
A substance deemed to adversely affect a developing embryo at a particular concentration, but does not affect the pregnant female.

EPA
The Environmental Protection Agency federally regulates and enforces environmental protection.

Explosive
A chemical that causes a sudden, almost instantaneous release of pressure, gas, and heat when subjected to sudden shock, pressure, or high temperature.

Flammable Gas
A gas that forms a flammable mixture with air at a concentration of 13 percent by volume or less or forms a range of flammable mixtures with air wider than 12 percent by volume, regardless of lower flammable limit.

Flammable liquid
Any liquid having a flashpoint below 100°F (37.8°C) except any mixture having liquid components with flashpoints of 100°F (37.8°C) or higher, the total of which make up 99 percent or more of the total volume of the mixture.

Flammable solid
A solid that is liable to cause a fire through friction, absorption of moisture, solid spontaneous chemical change, or retained heat from manufacturing or processing, or which can be ignited readily and when ignited burns so vigorously and persistently as to create a serious hazard.

Flammability
The ease with which a liquid, solid, or gas will ignite, either spontaneously (pyrophoric) or as the result of a spark or an open flame. The more flammable a material, the more readily ignition occurs.

Flashpoint
The minimum temperature at which a liquid gives off a vapor in sufficient concentration to ignite.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fume hood</td>
<td>A device located in a laboratory, enclosure on five sides with a movable sash or fixed partial enclosed on the remaining side; constructed and maintained to draw air from the laboratory and to prevent or minimize the escape of air contaminants into the laboratory; and allows chemical manipulations to be conducted in the enclosure without insertion of any part of the employee's body other than hands and arms.</td>
</tr>
<tr>
<td>Hazardous chemical</td>
<td>A chemical for which there is statistically significant evidence based on at least one study conducted in accordance with established scientific principles that acute or chronic health effects may occur in exposed employees. The term "health hazard" includes chemicals which are carcinogens, toxic or highly toxic agents, reproductive toxins, irritants, corrosives, sensitizers, hepatotoxins, nephrotoxins, neurotoxins, agents which act on the hematopoietic systems, and agents which damage the lungs, skin, eyes, or mucous membranes.</td>
</tr>
<tr>
<td>Highly toxic</td>
<td>A chemical falling within any of the following categories:</td>
</tr>
<tr>
<td></td>
<td>(a) A chemical that has a median lethal dose (LD50) of 50 milligrams or less per kilogram of body weight when administered orally to albino rats weighing between 200 and 300 grams each.</td>
</tr>
<tr>
<td></td>
<td>(b) A chemical that has a median lethal dose (LD50) of 200 milligrams or less per kilogram of body weight when administered by continuous contact for 24 hours (or less if death occurs within 24 hours) with the bare skin of albino rabbits weighing between two and three kilograms each.</td>
</tr>
<tr>
<td></td>
<td>(c) A chemical that has a median lethal concentration (LC50) in air of 200 parts per million by volume or less of gas or vapor, or 2 milligrams per liter or less of mist, fume, or dust, when administered by continuous inhalation for one hour (or less if death occurs within one hour) to albino rats weighing between 200 and 300 grams each.</td>
</tr>
<tr>
<td>Hood</td>
<td>A device/location in a laboratory, enclosed on five sides, to draw air from the laboratory and to prevent or minimize the escape of the air contaminants into the laboratory. Chemical manipulations may be conducted in the enclosure without inserting any portion of the employees body other than hands and arms.</td>
</tr>
<tr>
<td>Infectious waste</td>
<td>Waste that is capable of producing disease. For waste to be considered infectious, it must contain oncogenic viruses or other pathogenic microorganisms with sufficient virulence and quantity that exposure to the waste could result in an infectious disease.</td>
</tr>
<tr>
<td>Irritant</td>
<td>Chemical substances that cause tissue inflammation or soreness upon absorption, inhalation, or ingestion.</td>
</tr>
<tr>
<td>LD₉₀</td>
<td>The quantity of material that when ingested, injected, or applied to the skin as a single dose, will cause death of 50% of the test animals. The test conditions should be specified, the value is expressed in g/kg or mg/kg of body weight.</td>
</tr>
<tr>
<td>LEL</td>
<td>Lower Explosive Limit - same definition as LFL.</td>
</tr>
</tbody>
</table>
LFL Lower Flammable Limit - The lower limit of flammability of a gas or vapor at ordinary ambient temperatures expressed in percent of the gas or vapor in air by volume. This limit is assumed constant for temperatures up to 250°F (120°C) and is normally listed on a product's material safety data sheet.

LS Laboratory Supervisor

MOSH Maryland Occupational Safety and Health Administration - the state agency charged with the protection of worker health and safety. MOSH promulgates Maryland occupational safety and health standards.

MSDS Material Safety Data Sheets are produced by chemical manufacturers and importers. They relay chemical, physical, and hazard information about specific chemicals.

Mutagen Chemical compounds that induce mutations in DNA and living cells.

Neutralize To alter acidic or basic compounds to a pH of 7, making it chemically neutral.

Organic materials Any chemical compound containing carbon.

OSHA Occupational Safety and Health Administration - the branch of federal government charged with protection of worker health and safety. Maryland has a state operated program that is at least as effective as the federal program maintaining jurisdiction over UMCP known by the acronym MOSH.

Oxidizer A chemical that initiates or promotes combustion in materials, thereby causing fire either of itself or by the release of oxygen or other gases.

Oxidizing agent Oxygen-containing material which can decompose, generating oxygen.

PEL Permissible Exposure Limits for the workplace, set by regulation and enforced by OSHA. Most of these limit values were originally set, by consensus, by the ACGIH to assist industrial hygienists in implementing exposure control programs. As law, these are listed in 29 CFR 1910.1000 and subject to revision through the regulatory process.

PI Principal Investigator

Poison Any substance which is harmful to living tissue when applied in small doses. Determining factors include concentration, exposure time, particle size, the substance's affinity for tissue, and sensitivity of the exposed tissue to that compound.

Pyrophoric material Any solid or liquid that has the property of spontaneous ignition in air.

Radioactivity Nuclear transformation, either by natural or artificial means, resulting in emission of energy in the form of alpha, beta, or gamma rays. Amounts of radioactive material are described by the rate of radioactive decay, the Curie (Ci), or in metric multiples and fractions thereof.

Reactivity The proclivity of a compound to chemically react with other substances or itself, resulting in the liberation of energy. Can cause the formation of toxic or corrosive materials, pressure buildup, and temperature fluctuations.
<table>
<thead>
<tr>
<th>Reproductive toxins</th>
<th>Chemicals which affect the reproductive capabilities including chromosomal damage (mutations) and effects on fetuses (teratogenesis).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitizer</td>
<td>A chemical that causes a substantial proportion of exposed people or animals to develop an allergic reaction in normal tissue after repeated exposure to the chemical.</td>
</tr>
<tr>
<td>STEL</td>
<td>Short Term Exposure Limit, a 15-minute time-weighted average exposure which should not be exceeded at any time during a work day, even if the eight-hour time-weighted average is within the TLV.</td>
</tr>
<tr>
<td>Teratogen</td>
<td>Chemical and physical agents which interfere with normal embryonic development. Teratogens may produce congenital malformations or death of the fetus without inducing damage to the pregnant female.</td>
</tr>
<tr>
<td>TLV</td>
<td>Threshold Limit Value indicates the concentration of a chemical substance in the atmosphere that is considered non-hazardous in a person's normal working life.</td>
</tr>
<tr>
<td>TWA</td>
<td>Time Weighted Average is the concentration for a normal 8-hour working day (40 hours/week) to which all workers may be exposed without adverse effect.</td>
</tr>
<tr>
<td>Toxic</td>
<td>A chemical falling within any of the following categories:</td>
</tr>
<tr>
<td></td>
<td>(a) A chemical that has a median lethal dose (LD50) of more than 50 milligrams per kilogram but not more than 500 milligrams per kilogram of body weight when administered orally to albino rats weighing between 200 and 300 grams each.</td>
</tr>
<tr>
<td></td>
<td>(b) A chemical that has a median lethal dose (LD50) of more than 200 milligrams per kilogram but not more than 1000 milligrams per kilogram of body weight when administered by continuous contact for 24 hours (or less if death occurs within 24 hours) with the bare skin of albino rabbits weighing between two and three kilograms each.</td>
</tr>
<tr>
<td></td>
<td>(c) A chemical that has a median lethal concentration (LC50) in air of more than 200 parts per million but not more than 2,000 parts per million by volume of gas or vapor, or more than two milligrams per liter but not more than 20 milligrams per liter of mist, fume, or dust, when administered by continuous inhalation for one hour (or less if death occurs within one hour) to albino rats weighing between 200 and 300 grams each.</td>
</tr>
<tr>
<td>Ultraviolet light</td>
<td>Radiation in the electromagnetic spectrum (wavelengths of 100 - 3900 Ångstroms).</td>
</tr>
<tr>
<td>Volatility</td>
<td>The tendency of a liquid or solid to pass into the vapor state at a particular temperature.</td>
</tr>
<tr>
<td>Water reactive</td>
<td>A chemical that reacts with water to release a gas that is either flammable or presents a health hazard.</td>
</tr>
</tbody>
</table>
Appendix VIII

REFERENCES

Singer, James; Pesticide Safety: Guidelines for Personnel Protection; Davis, October, 1982.

